EXOGENOUS APPLICATION OF IRON ANDZINC NANOPARTICLES ON GERMINATION AND GROWTH CHARACTERISTICS OF SUGARCANE (SACCHARUM OFFICINARUM L.) BUDNODE

Authors

  • Mena Hameed Department of Plant Breeding and Genetics, College of Agriculture University of Sargodha, Pakistan.
  • Iram Shahzadi Department of Agronomy, Sindh Agriculture University, Tandojam, Pakistan.
  • Asif Kaleri Departmet of Agronomy
  • Danish Manzoor Department of Agronomy, Sindh Agriculture University, Tandojam, Pakistan
  • Akhtar Jamali Department of Agronomy, Sindh Agriculture University, Tandojam, Pakistan.
  • Muahmmad Tufail Jogi Department of Agronomy, Sindh Agriculture University, Tandojam, Pakistan.
  • Aadab Akhtar Department of Botany, University of Agriculture, Faisalabad Pakistan
  • Rida Pervaiz Directorate of Agriculture Research (Dates) at Kech at Turbat, Balochistan, Pakistan
  • Sabir Ali Directorate of Agriculture Research (Dates) at Kech at Turbat, Balochistan, Pakistan.
  • Muhammad Ashraf Directorate of Agriculture Research Loralai, Balochistan, Pakistan.

DOI:

https://doi.org/10.34016/pjbt.2024.21.02.935

Keywords:

Sugarcane, germination, growth, yield, Fe, nanoparticles

Abstract

The applications of nano-particles (NPs) in agriculture, such as nano-fertilizers, nano-insecticides, and nano-herbicides, are significantly impacted by their specific structure. In an experiment conducted at the College of Agriculture, University of Sargodha, the presence of Fe and Zn nano-particles at different concentrations was investigated to promote the appearance and growth of sugarcane buds. The experiment was conducted using a Randomize Complete Block Design (RCBD) method, with three replications of plant height at different concentrations of Fe NPs and Zn NPs. The results showed that high Zn concentrations, such as 75 and 100 mg L-1, significantly influenced germination-related characteristics, including minimum plant height. Sugarcane buds treated with Fe NPs at 50 mg L-1 and Zn NPs at 100 mg L-1 had the largest leaf area, while buds treated with Zn NPs at 50 mg L-1 had the minimum leaf-to-plant ratio. The topical application of Fe NPs and Zn NPs to sugarcane increased chlorophyll concentration and photosynthetic rate by 1.3 cm. The plant also showed the highest amount of zinc. At 100 mg L-1, the shoot Fe 6.9 concentration in Zn NPs was the highest. In conclusion, adding Zn and Fe nano-particles in amounts ranging from 100 mg L-1 to 50 mg L-1 significantly improved the growth and development of sugarcane bud nodes.

Metrics

Metrics Loading ...

References

Aldossari, S. M., Rehman, L. U., Ahmad, I., Aslam, M., Fozia, F., Mohanty, M., & Aboul-Soud, M. A. (2023). Phytosynthesized Iron Oxide Nanoparticles Using Aqueous Extract of Saccharum arundinaceum (Hardy Sugar Cane), Their Characterizations, Antiglycation, and Cytotoxic Activities. ACS omega, 8(44), 41214-41222. DOI: https://doi.org/10.1021/acsomega.3c04484

Abbasi, R. P., Akram, M. S., Rafiq, K., Basheer, S., & Iqbal, N. (2023). Staphylococcus sciuri SAT-17 facilitated in vitro regenerated sugarcane plantlet cultivation in saline soil by harmonizing oxidative signaling, photosynthetic efficiency, and nutrient uptake patterns. Journal of Soil Science and Plant Nutrition, 23(1), 163-176. DOI: https://doi.org/10.1007/s42729-022-00984-9

Aguilar, I. M., & Watson, T. (2023). Evaluation of nematicides for managing plant-parasitic nematodes in Louisiana sugarcane. In Journal of Nematology, 55(1), 2-2.

Aitken, R.L. & McCallum, L.E. (1988). Boron toxicity in soil solution. Soil Research, 26: 605-610. DOI: https://doi.org/10.1071/SR9880605

Borges, C. E., Cazetta, J. O., Sousa, F. B. F. D., & Oliveira, K. S. (2020). Aluminum toxicity reduces the nutritional efficiency of macronutrients and micronutrients in sugarcane seedlings. Ciência e Agrotecnologia, 44, 015120. DOI: https://doi.org/10.1590/1413-7054202044015120

Bharti, A. S., Sharma, S., Singh, A. K., Tiwari, M. K. & Uttam, K. N. (2021). Assessment of the elemental profile of leafy vegetables by synchrotron-radiation-induced energy dispersive X-ray fluorescence spectroscopy. Journal of Applied Spectroscopy, 88(3), 653-661. DOI: https://doi.org/10.1007/s10812-021-01221-4

Blake, G, Hartge, K (1986) Bulk density. In ‘Methods of soil analysis, part 1. Physical and mineralogical methods. (Ed. A Klute) pp. 363–375. (American Society of Agronomy, Inc., Soil Science Society of American, Inc.: Madison, WI, USA DOI: https://doi.org/10.2136/sssabookser5.1.2ed.c13

Costa, W. A. D., Padilha, C. E. D. A., Oliveira Júnior, S. D. D., Silva, F. L. H. D., Silva, J., Ancântara, M. A., & Santos, E. S. D. (2020). Oil-lipids, carotenoids, and fatty acids are simultaneously produced by Rhodotorulamucilaginosa CCT3892 using sugarcane molasses as a carbon source. Brazilian Journal of Food Technology, 23, 2019064. DOI: https://doi.org/10.1590/1981-6723.06419

Darmaningtyas, R. F., & Sakya, A. T. (2023). Application of nano Fe on the growth of rice under drought stress. In IOP Conference Series: Earth and Environmental Science (1165, 1, p. 012034). DOI: https://doi.org/10.1088/1755-1315/1165/1/012034

Economic Survey of Pakistan. (2020-21). Economic advisor’s wing, finance division,government of Pakistan, Islamabad.

Fernández, V., Gil‐Pelegrín, E., & Eichert, T. (2021). Foliar water and solute absorption: an update. The Plant Journal, 105(4), 870-883. DOI: https://doi.org/10.1111/tpj.15090

Gaber, A. A., Abou-Hadid, A. F., El-Gabry, Y. A., &Ebid, M. H. M. (2021). Morphological and physiological study for sugarcane early selection to drought tolerance. Plant Archives (09725210), 21(1). DOI: https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no1.269

Hu, P., An, J., Faulkner, M. M., Wu, H., Li, Z., Tian, X. & Giraldo, J. P. (2020). Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles.ACS nano, 14(7), 7970-7986. DOI: https://doi.org/10.1021/acsnano.9b09178

Hasnidawani, J. N., Azlina, H. N., Norita, H., Bonnia, N. N., Ratim, S. & Ali, E. S. (2016). Synthesis of ZnO nanostructures using sol-gel method. Procedia Chemistry, 19, 211-216. DOI: https://doi.org/10.1016/j.proche.2016.03.095

Itroutwar, P. D., Govindaraju, K., Tamilselvan, S., Kannan, M., Raja, K. & Subramanian, K. S. (2020). Seaweed-based biogenic ZnO nanoparticles for improving agro-agro-morphological characteristics of rice (Oryza sativa L.). Journal of Plant Growth Regulation, 39(2), 717-728. DOI: https://doi.org/10.1007/s00344-019-10012-3

Iwuozor, K. O., Ogunfowora, L. A., &Oyekunle, I. P. (2022). Review on sugarcane-mediated nanoparticle synthesis: a green approach.24(4), 1186-1197. DOI: https://doi.org/10.1007/s12355-021-01038-7

Khaliq, A., Mahmood, A., Ahmad, H. B., Nadeem, M. A., Ahmad, N., ul Sher, R. & Khursheed, M. R. (2020). Benefit Cost Ratio of Buds Chips Planting and its Effects on Yield and Quality of Sugarcane. Advancements in Life Sciences, 7(3), 151-156.

Khonghintaisong, J., Songsri, P., &Jongrungklang, N. (2020). Root characteristics of individual tillers and the relationships with above-ground growth and dry matter accumulation in sugarcane. Pakistan Journal of Botany, 52, 101-109. DOI: https://doi.org/10.30848/PJB2020-1(35)

Lowry, G. V., Avellan, A. & Gilbertson, L. M. (2019). Opportunities and challenges for biotechnology in the agri-tech revolution. Nature Nanotechnology, 14(6), 517-522. DOI: https://doi.org/10.1038/s41565-019-0461-7

Mehdi, F., Cao, Z., Zhang, S., Gan, Y., Cai, W., Peng, L., & Yang, B. (2024). Factors affecting the production of sugarcane yield and sucrose accumulation: suggested potential biological solutions. Frontiers in Plant Science, 15, 1374228. DOI: https://doi.org/10.3389/fpls.2024.1374228

Mellis, E. V., Ramos, L. F., Ferreira, A. J., Andrade, R. P., Teixeira, L. A., Otto, R., & Ferraz-Almeida, R. (2024). Micronized Zn Oxide on Carbonic Anhydrase Activity, Health, and Yield of Ratoon Sugarcane Under Tropical Conditions. Sugar Tech, 1-13.

Macan, N. P., Ferrarezi, R. S., Matsura, E. E., Maia, A. H., Xavier, M. A., & da Silva, T. P. C. T. (2020). Fertilizer recommendations for sugarcane pre-sprouted seedling production in ebb-and-flow sub irrigation benches. Sugar Tech, 22, 978-986. DOI: https://doi.org/10.1007/s12355-020-00847-6

Malik, A., Mor, V. S., Tokas, J., Punia, H., Malik, S., Malik, K. &Karwasra, A. (2020). Biostimulant-treated seedlings under sustainable agriculture: A global perspective facing climate change. Agronomy, 11(1), 14. DOI: https://doi.org/10.3390/agronomy11010014

Majeed, A., Rashid, I., Niaz, A., Ditta, A., Sameen, A., Al-Huqail, A. A. & Siddiqui, M. H. (2022). Balanced Use of Zn, Cu, Fe, and B Improves the Yield and Sucrose Contents of Sugarcane Juice Cultivated in Sandy Clay Loam Soil. Agronomy, 12(3), 696. DOI: https://doi.org/10.3390/agronomy12030696

Mangrio, N., Kandhro, M. N., Soomro, A. A., Mari, N. & Shah, Z. U. H. (2020). Growth, Yieldand Sucrose Percent Response of Sugarcane to Zinc and Boron Application. Sarhad Journal of Agriculture, 36(2). DOI: https://doi.org/10.17582/journal.sja/2020/36.2.459.469

Misra, V., Solomon, S., Mall, A. K., Prajapati, C. P., Hashem, A., Abd_Allah, E. F., & Ansari, M. I. (2020). Morphological assessment of water stressed sugarcane: A comparison of waterlogged and drought affected crop. Saudi Journal of Biological Sciences, 27(5), 1228-1236. DOI: https://doi.org/10.1016/j.sjbs.2020.02.007

Mellis, E. V., Ramos, L. F., Ferreira, A. J., Andrade, R. P., Teixeira, L. A., Otto, R., & Ferraz-Almeida, R. (2024). Micronized Zn Oxide on Carbonic Anhydrase Activity, Health, and Yield of Ratoon Sugarcane Under Tropical Conditions. Sugar Tech, 1-13. DOI: https://doi.org/10.1007/s12355-024-01424-x

Otto, R., Machado, B. A., da Silva, A. C. M., de Castro, S. G. Q., & Lisboa, I. P. (2022). Sugarcane pre-sprouted seedlings: A novel method for sugarcane establishment. Field Crops Research, 275, 108336. DOI: https://doi.org/10.1016/j.fcr.2021.108336

Orozco-Ortiz, C., Sánchez, L., Araya-Mattey, J., Vargas-Solórzano, I., & Araya-Valverde, E. (2023). BIT® bioreactor increases in vitro multiplication of quality shoots in sugarcane (Saccharum spp. variety LAICA 04-809). Plant Cell, Tissue and Organ Culture (PCTOC), 152(1), 115-128. DOI: https://doi.org/10.1007/s11240-022-02392-4

Raza, H. A., Hameed, M. U., Islam, M. S., Lone, N. A., Raza, M. A., & Sabagh, A. E. (2023). Environmental and Economic Benefits of Sustainable Sugarcane Initiative and Production Constraints in Pakistan: A Review. Global Agricultural Production: Resilience to Climate Change, 441-468. DOI: https://doi.org/10.1007/978-3-031-14973-3_17

Raza, M. M., Gul, H., Yousaf, M. M., Ullah, S., Hussain, G. S., Hussain, M. & Zeshan, M. (2021). Evaluation of different planting technique in ratoon sugarcane under semi-arid conditions. Pakistan Journal of Agricultural Research, 34(2), 254-258. DOI: https://doi.org/10.17582/journal.pjar/2021/34.2.254.258

Rehman, A., Hassan, F., & Qamar, R. (2021). Application of plant growth promoters on sugarcane (Saccharum officinarum L.) budchip under subtropical conditions. Asian Journal of Agriculture and Biology, 2. DOI: https://doi.org/10.35495/ajab.2020.03.202

Salman, M., Inamullah, Jamal, A., Mihoub, A., Saeed, M. F., Radicetti, E., &Pampana, S. (2023). Composting sugarcane filter mud with different sources benefits sweet maize. Agronomy, 13(3), 748. DOI: https://doi.org/10.3390/agronomy13030748

Shakiba, S., Astete, C. E., Paudel, S., Sabliov, C. M., Rodrigues, D. F. & Louie, S. M. (2020). Emerging investigator series: polymeric nanocarriers for agricultural applications: synthesis, characterization, and environmental and biological interactions. Environmental Science: Nano, 7(1), 37-67. DOI: https://doi.org/10.1039/C9EN01127G

Savassa, S. M., Duran, N. M., Rodrigues, E. S., De Almeida, E., Van Gestel, C. A., Bompadre, T. F. & P. de Carvalho, H. W. (2018). Effects of ZnO nanoparticles on Phaseolus vulgaris germination and seedling development determined by X-ray spectroscopy. ACS Applied Nano Materials 1(11), 6414-6426. DOI: https://doi.org/10.1021/acsanm.8b01619

Shakuntala, N. M., Kavya, K. P., Macha, S. I., Kurnalliker, V., & Patil, M. G. (2020). Studies on standardization of water soaking duration on seed quality in cucumber (Cucumis sativus L.) seeds. Journal of Pharmacognosy and Phytochemistry, 9(4), 1400-1404.

Saenchai, C., Bouain, N., Kisko, M., Prom-U-Thai, C., Doumas, P. &Rouached, H. (2016). The involvement of OsPHO1; 1 in the regulation of iron transport through integration ofphosphate and zinc deficiency signaling. Frontiers in plant science, 7, 396. DOI: https://doi.org/10.3389/fpls.2016.00396

Santana, R. S., Mauad, M., de Medeiros, E. S., Silva, P. V., Mussury Franco Silva, R. M., &Goneli, A. L. D. (2023). Dry matter accumulation and macronutrient uptake in sugarcane varieties. Journal of Plant Nutrition, 46(14), 3385-3401. DOI: https://doi.org/10.1080/01904167.2023.2205519

Suchowilska, E., Bieńkowska, T., Stuper-Szablewska, K., &Wiwart, M. (2020). Concentrations of phenolic acids, flavonoids and carotenoids and the antioxidant activity of the grain, flour and bran of Triticum polonicum as compared with three cultivated wheat species. Agriculture, 10(12), 591. DOI: https://doi.org/10.3390/agriculture10120591

Tadu, S., Mandal D. & De, D. E. (2007). Studies on sprouting and rooting of single budded sugarcane setts in seed bed. Agric. Sci. Digest, 27(3): 222-224.

Tamez, C., Morelius, E. W., Hernandez-Viezcas, J. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. (2019). Biochemical and physiological effects of copper compounds/nanoparticles on sugarcane (Saccharum officinarum). Science of the Total Environment, 649, 554-562. DOI: https://doi.org/10.1016/j.scitotenv.2018.08.337

Tamashiro, J. R., Lima, I. S., Paiva, F. F. G. D., Silva, L. H. P., Oliveira, D. V. M. D., Baffa, O., & Kinoshita, A. (2022). Treatment of Sugarcane Vinasse Using Heterogeneous Photocatalysis with Zinc Oxide Nanoparticles. Sustainability, 14(23), 16052. DOI: https://doi.org/10.3390/su142316052

Verma, K. K., Song, X. P., Verma, C. L., Huang, H. R., Singh, M., Xu, L., & Li, Y. R. (2023). Mathematical modeling of climate and fluoride effects on sugarcane photosynthesis with silicon nanoparticles. Plant Physiology and Biochemistry, 204, 108089. DOI: https://doi.org/10.1016/j.plaphy.2023.108089

Yang, S. L., Zhang, Y. B., Deng, J., Li, R. D., Fan, X., Dao, J. M., & Hussain Bukhari, S. A. (2021). Effect of cutting depth during sugarcane (Saccharum spp. hybrid) harvest on root characteristics and yield. Plos one, 16(1), 0238085. DOI: https://doi.org/10.1371/journal.pone.0238085

Yu, D., Zha, Y., Shi, L., Jin, X., Hu, S., Yang, Q., & Zeng, W. (2020). Improvement of sugarcane yield estimation by assimilating UAV-derived plant height observations. European Journal of Agronomy, 121, 126159. DOI: https://doi.org/10.1016/j.eja.2020.126159

Zhao, Y., Cao, J., Wang, Z., Liu, L., Yan, M., Zhong, N., & Zhao, P. (2023). Enhancing Sugarcane Growth and Improving Soil Quality by Using a Network-Structured Fertilizer Synergist. Sustainability, 15(2), 1428. DOI: https://doi.org/10.3390/su15021428

Zhang, R., Zhang, H., Tu, C., Hu, X., Li, L., Luo, Y., & Christie, P. (2015). Phytotoxicity of ZnO nanoparticles and the released Zn (II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination. Environmental Science and Pollution Research, 22, 11109-11117. DOI: https://doi.org/10.1007/s11356-015-4325-x

Zhang, X., Zhu, Z., Liu, W., Gao, F., Guo, J., Song, B. & Zhang, F. (2022). The Selective Function of Quantum Biological Electron Transfer between DNA Bases and Metal Ionsin DNA Replication. The Journal of Physical Chemistry Letters, 13(33), 7779-7787 DOI: https://doi.org/10.1021/acs.jpclett.2c01877

Downloads

Published

2024-09-09

How to Cite

Hameed, M., Shahzadi, I., Kaleri, A., Manzoor, D., Jamali, A., Jogi, M. T., … Ashraf, M. (2024). EXOGENOUS APPLICATION OF IRON ANDZINC NANOPARTICLES ON GERMINATION AND GROWTH CHARACTERISTICS OF SUGARCANE (SACCHARUM OFFICINARUM L.) BUDNODE. Pakistan Journal of Biotechnology, 21(2), 445–456. https://doi.org/10.34016/pjbt.2024.21.02.935

Issue

Section

Research Articles

Most read articles by the same author(s)