ROUTE OF ADMINISTRATION OF NANOPARTICLES COMBATING A RESISTANT BACTERIUM.

Authors

  • Asif Naeem Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology Engineering and Management Sciences (BUITEMS) Quetta 87300, Balochistan, Pakistan
  • Zahid Naeem Qaisrani Department of Chemical Engineering, Faculty of Engineering & Architecture, Balochistan University of Information Technology Engineering and Management Sciences (BUITEMS) Quetta 87300, Balochistan, Pakistan
  • Shazia Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology Engineering and Management Sciences (BUITEMS) Quetta 87300, Balochistan, Pakistan
  • Aziza Noor Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology Engineering and Management Sciences (BUITEMS) Quetta 87300, Balochistan, Pakistan
  • Imran Hussain Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology Engineering and Management Sciences (BUITEMS) Quetta 87300, Balochistan, Pakistan
  • Asif Raheem Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology Engineering and Management Sciences (BUITEMS) Quetta 87300, Balochistan, Pakistan

DOI:

https://doi.org/10.34016/pjbt.2024.21.01.861

Keywords:

Nanoparticles; Antibiotics; Biosynthesis; Synergistic effects

Abstract

In the middle of the late century, the concept of medicine has been reshaped and reformed by the discovery of antibiotics. Untreatable infectious diseases have become treatable, However, with time microbes adapt to resist the antibiotic treatments due to their enormous adaptive ability. Therefore, new antibiotics were required to combat these resistant bacteria. But the enormous adaptive ability of bacteria has turned the next generation of antibiotics obsolete. Thus, Nanoparticles play a crucial role due to their antibacterial activity. Besides, these can act as carriers for various antibiotics to increase their efficiency against superbugs. The current review provides an in-depth overview of nanoparticles, their biosynthesis, antibacterial activity, and synergistic effects with various antibiotics.

Metrics

Metrics Loading ...

References

Abo-Shama, U. H., El-Gendy, H., Mousa, W. S., Hamouda, R. A., Yousuf, W. E., Hetta, H. F., & Abdeen, E. E. (2020). Synergistic and antagonistic effects of metal nanoparticles in combination with antibiotics against some reference strains of pathogenic microorganisms. Infection and Drug Resistance, 13, 351–362. DOI: https://doi.org/10.2147/IDR.S234425

Adzitey, F. (2015). Antibiotic Classes and Antibiotic Susceptibility of Bacterial Isolates from Selected Poultry; A Mini Review. World’s Veterinary Journal, 6(1), 36. DOI: https://doi.org/10.5455/wvj.20150853

Agarwal, V., & Nair, S. K. (2013). Antibiotics for Emerging Pathogens. In Infectious Diseases (pp. 7–26). Springer New York. DOI: https://doi.org/10.1007/978-1-4614-5719-0_2

Agnihotri, M., Joshi, S., Kumar, A. R., Zinjarde, S., & Kulkarni, S. (2009). Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Materials Letters, 63(15), 1231–1234. DOI: https://doi.org/10.1016/j.matlet.2009.02.042

Akhavan, O., & Ghaderi, E. (2010). Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 4(10), 5731–5736. DOI: https://doi.org/10.1021/nn101390x

Al-Holy, M. A., Lin, M., Cavinato, A. G., & Rasco, B. A. (2006). The use of Fourier transform infrared spectroscopy to differentiate Escherichia coli O157:H7 from other bacteria inoculated into apple juice. Food Microbiology, 23(2), 162–168. DOI: https://doi.org/10.1016/j.fm.2005.01.017

Ali, S., Khan, I., Khan, S. A., Sohail, M., Ahmed, R., Rehman, A. ur, Ansari, M. S., & Morsy, M. A. (2017). Electrocatalytic performance of Ni@Pt core–shell nanoparticles supported on carbon nanotubes for methanol oxidation reaction. Journal of Electroanalytical Chemistry, 795, 17–25. DOI: https://doi.org/10.1016/j.jelechem.2017.04.040

Allahverdiyev, A. M., Abamor, E. S., Bagirova, M., & Rafailovich, M. (2011). Antimicrobial effects of TiO(2) and Ag(2)O nanoparticles against drug-resistant bacteria and leishmania parasites. In Future microbiology (Vol. 6, Issue 8, pp. 933–940). DOI: https://doi.org/10.2217/fmb.11.78

American Psychological Association. (2017). Clinical Practice Guideline for the Treatment of Posttraumatic Stress Disorder (PTSD). Washington, DC: APA, Guideline Development Panel for the Treatment of Posttraumatic Stress Disorder in Adults., 6, 139.

Aminov, R. I. (2010). A brief history of the antibiotic era: Lessons learned and challenges for the future. Frontiers in Microbiology, 1(DEC). DOI: https://doi.org/10.3389/fmicb.2010.00134

Anandalakshmi, K., Venugobal, J., & Ramasamy, V. (2016). Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Applied Nanoscience (Switzerland), 6(3), 399–408. DOI: https://doi.org/10.1007/s13204-015-0449-z

Annavajhala, M. K., Gomez-Simmonds, A., & Uhlemann, A. C. (2019). Multidrug-resistant Enterobacter cloacae complex emerging as a global, diversifying threat. Frontiers in Microbiology, 10(JAN). DOI: https://doi.org/10.3389/fmicb.2019.00044

Ansari, M. A., Khan, H. M., Alzohairy, M. A., Jalal, M., Ali, S. G., Pal, R., & Musarrat, J. (2015). Green synthesis of Al2O3 nanoparticles and their bactericidal potential against clinical isolates of multi-drug resistant Pseudomonas aeruginosa. World Journal of Microbiology and Biotechnology, 31(1), 153–164. DOI: https://doi.org/10.1007/s11274-014-1757-2

Apte, M., Sambre, D., Gaikawad, S., Joshi, S., Bankar, A., Kumar, A. R., & Zinjarde, S. (2013). Psychrotrophic yeast Yarrowia lipolytica NCYC 789 mediates the synthesis of antimicrobial silver nanoparticles via cell-associated melanin. AMB Express, 3, 1–8. DOI: https://doi.org/10.1186/2191-0855-3-32

Arora, B., Murar, M., & Dhumale, V. (2015). Antimicrobial potential of TiO2 nanoparticles against MDR Pseudomonas aeruginosa. Journal of Experimental Nanoscience, 10(11), 819–827. DOI: https://doi.org/10.1080/17458080.2014.902544

Astefanei, A., Núñez, O., & Galceran, M. T. (2015). Characterisation and determination of fullerenes: A critical review. In Analytica Chimica Acta. DOI: https://doi.org/10.1016/j.aca.2015.03.025

Ayaz Ahmed, K. B., Raman, T., & Anbazhagan, V. (2016). Platinum nanoparticles inhibit bacteria proliferation and rescue zebrafish from bacterial infection. RSC Advances, 6(50), 44415–44424. DOI: https://doi.org/10.1039/C6RA03732A

Bai, H. J., Zhang, Z. M., & Gong, J. (2006). Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides. Biotechnology Letters, 28(14), 1135–1139. DOI: https://doi.org/10.1007/s10529-006-9063-1

Bai, H., Zhang, Z., Guo, Y., & Jia, W. (2009). Biological synthesis of size-controlled cadmium sulfide nanoparticles using immobilized rhodobacter sphaeroides. Nanoscale Research Letters, 4(7), 717–723. DOI: https://doi.org/10.1007/s11671-009-9303-0

Bajpai, A. K., & Gupta, R. (2011). Magnetically mediated release of ciprofloxacin from polyvinyl alcohol based superparamagnetic nanocomposites. Journal of Materials Science: Materials in Medicine, 22(2), 357–369. DOI: https://doi.org/10.1007/s10856-010-4214-2

Bassetti, M., Peghin, M., Vena, A., & Giacobbe, D. R. (2019). Treatment of Infections Due to MDR Gram-Negative Bacteria. Frontiers in Medicine, 6. DOI: https://doi.org/10.3389/fmed.2019.00074

Beheshti, N., Soflaei, S., Shakibaie, M., Yazdi, M. H., Ghaffarifar, F., Dalimi, A., & Shahverdi, A. R. (2013). Efficacy of biogenic selenium nanoparticles against Leishmania major: In vitro and in vivo studies. Journal of Trace Elements in Medicine and Biology, 27, 203–207. DOI: https://doi.org/10.1016/j.jtemb.2012.11.002

Benech, R. O., Kheadr, E. E., Laridi, R., Lacroix, C., & Fliss, I. (2002). Inhibition of Listeria innocua in cheddar cheese by addition of nisin Z in liposomes or by in situ production in mixed culture. Applied and Environmental Microbiology, 68(8), 3683–3690. DOI: https://doi.org/10.1128/AEM.68.8.3683-3690.2002

Beyth, N., Houri-Haddad, Y., Domb, A., Khan, W., & Hazan, R. (2015). Alternative antimicrobial approach: Nano-antimicrobial materials. In Evidence-based Complementary and Alternative Medicine (Vol. 2015, Issue October). DOI: https://doi.org/10.1155/2015/246012

Bhatia, S., & Bhatia, S. (2016). Nanoparticles Types, Classification, Characterization, Fabrication Methods and Drug Delivery Applications. In Natural Polymer Drug Delivery Systems (pp. 33–93). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-41129-3_2

Bosi, S., Da Ros, T., Spalluto, G., & Prato, M. (2003). Fullerene derivatives: An attractive tool for biological applications. In European Journal of Medicinal Chemistry (Vol. 38, Issues 11–12, pp. 913–923). DOI: https://doi.org/10.1016/j.ejmech.2003.09.005

Bulbake, U., Doppalapudi, S., Kommineni, N., & Khan, W. (2017). Liposomal formulations in clinical use: An updated review. In Pharmaceutics (Vol. 9, Issue 2). DOI: https://doi.org/10.3390/pharmaceutics9020012

Burke, J. P. (2003). Infection control - A problem for patient safety. New England Journal of Medicine, 348(7), 651–656. DOI: https://doi.org/10.1056/NEJMhpr020557

Burygin, G. L., Khlebtsov, B. N., Shantrokha, A. N., Dykman, L. A., Bogatyrev, V. A., & Khlebtsov, N. G. (2009). On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles. Nanoscale Research Letters, 4(8), 794–801. DOI: https://doi.org/10.1007/s11671-009-9316-8

Butler, C. C., Hillier, S., Roberts, Z., Dunstan, F., Howard, A., & Palmer, S. (2006). Antibiotic-resistant infections in primary care are symptomatic for longer and increase workload: Outcomes for patients with E. coli UTIs. British Journal of General Practice, 56(530), 686–692.

C Reygaert, W. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology, 4(3), 482–501. DOI: https://doi.org/10.3934/microbiol.2018.3.482

Cao, B., & Cai, W. (2008). From ZnO nanorods to nanoplates: Chemical bath deposition growth and surface-related emissions. Journal of Physical Chemistry C, 112(3), 680–685. DOI: https://doi.org/10.1021/jp076870l

Carman, R. J., & Wilkins, T. D. (1991). Clostridium spiroforme to antimicrobial agents. In Veterinary Microbiology (Vol. 28). DOI: https://doi.org/10.1016/0378-1135(91)90074-P

Castano, A. P., Mroz, P., & Hamblin, M. R. (2006). Photodynamic therapy and anti-tumour immunity. In Nature Reviews Cancer (Vol. 6, Issue 7, pp. 535–545). DOI: https://doi.org/10.1038/nrc1894

Chakravarty, S., & Kivelson, S. (1991). Superconductivity of doped fullerenes. EPL, 16(8), 751–756. DOI: https://doi.org/10.1209/0295-5075/16/8/008

Chanlett, E. T. (1947). Standard Methods for the Examination of Water and Sewage. American Journal of Public Health and the Nations Health, 37(8), 1053–1054. DOI: https://doi.org/10.2105/AJPH.37.8.1053-b

Chatterjee, S., Jain, Y., & Poonawala, H. (2018). Drug-resistant tuberculosis: Is India ready for the challenge? In BMJ Global Health (Vol. 3, Issue 4, p. 971). BMJ Publishing Group. DOI: https://doi.org/10.1136/bmjgh-2018-000971

Chen, C. W., Hsu, C. Y., Lai, S. M., Syu, W. J., Wang, T. Y., & Lai, P. S. (2014). Metal nanobullets for multidrug resistant bacteria and biofilms. In Advanced Drug Delivery Reviews (Vol. 78, pp. 88–104). Elsevier B.V. DOI: https://doi.org/10.1016/j.addr.2014.08.004

Chevalier, M. T., Gonzalez, J., & Alvarez, V. (2015). Biodegradable polymeric microparticles as drug delivery devices. IFMBE Proceedings, 49, 187–190. DOI: https://doi.org/10.1007/978-3-319-13117-7_49

Chifiriuc, C., Grumezescu, V., Grumezescu, A. M., Saviuc, C., Lazăr, V., & Andronescu, E. (2012). Hybrid magnetite nanoparticles/rosmarinus officinalis essential oil nanobiosystem with antibiofilm activity. Nanoscale Research Letters, 7. DOI: https://doi.org/10.1186/1556-276X-7-209

Clardy, J., Fischbach, M. A., & Currie, C. R. (2009). The natural history of antibiotics. In Current Biology (Vol. 19, Issue 11). DOI: https://doi.org/10.1016/j.cub.2009.04.001

Cuenca, A. G., Jiang, H., Hochwald, S. N., Delano, M., Cance, W. G., & Grobmyer, S. R. (2006). Emerging implications of nanotechnology on cancer diagnostics and therapeutics. In Cancer (Vol. 107, Issue 3, pp. 459–466). DOI: https://doi.org/10.1002/cncr.22035

Darroudi, M., Ahmad, M. B., & Mashreghi, M. (2014). Gelatinous silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. Journal of Optoelectronics and Advanced Materials, 16(1–2), 182–187.

David L. Cohn, F. B. and M. C. R. (1997). Drug Resistant Tuberculosis Review World Wide. Clinical Infectious Diseases, 24(Suppl 1), 19–45. DOI: https://doi.org/10.1093/clinids/24.Supplement_1.S121

De Jong, W. H., & Borm, P. J. A. (2008). Drug delivery and nanoparticles: Applications and hazards. In International Journal of Nanomedicine (Vol. 3, Issue 2, pp. 133–149). DOI: https://doi.org/10.2147/IJN.S596

Degnan, A. J., Buyong, N., & Luchansky, J. B. (1993). Antilisterial activity of pediocin AcH in model food systems in the presence of an emulsifier or encapsulated within liposomes. International Journal of Food Microbiology, 18(2), 127–138. DOI: https://doi.org/10.1016/0168-1605(93)90217-5

Derderian, S. (2007). Alexander Fleming’s miraculous discovery of Penicillin. Rivier Academic Journal, 3(2), 1–5.

Dinesh Kumar, V., Verma, P. R. P., & Singh, S. K. (2015). Development and evaluation of biodegradable polymeric nanoparticles for the effective delivery of quercetin using a quality by design approach. LWT - Food Science and Technology, 61(2), 330–338. https://doi.org/10.1016/j.lwt.2014.12.020 DOI: https://doi.org/10.1016/j.lwt.2014.12.020

Dolmans, D., Fukumura, D., cancer, R. J.-N. reviews, & 2003, undefined. (2003). Photodynamic therapy for cancer. Nature.Com. https://doi.org/10.1038/nrc1070 DOI: https://doi.org/10.1038/nrc1071

DRĂGHICI, A., Crivineanu, M., Sturzu, S., & Nicorescu, V. (2017). Reports And Syntheses | Referate Şi Sinteze. In agmv.ro. https://agmv.ro/wp-content/uploads/2019/10/REZISTENȚA-Bacteriilor-La-Antibiotice-–-O-Amenințare-La-Adresa-Omenirii.Pdf

Duffy, L. L., Osmond-McLeod, M. J., Judy, J., & King, T. (2018). Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter. Food Control, 92, 293–300. DOI: https://doi.org/10.1016/j.foodcont.2018.05.008

Dugassa, J., & Shukuri, N. (2017). Review on antibiotic resistance and its mechanism of development. Journal of Health, Health, Medicine and Nursing, 1(3), 1–17.

Durán, N., Marcato, P. D., Alves, O. L., De Souza, G. I., & Esposito, E. (2005). Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Journal of Nanobiotechnology, 3(1), 8. DOI: https://doi.org/10.1186/1477-3155-3-8

Durán, N., Marcato, P. D., De Conti, R., Alves, O. L., Costa, F. T. M., & Brocchi, M. (2010). Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. In Journal of the Brazilian Chemical Society (Vol. 21, Issue 6, pp. 949–959). DOI: https://doi.org/10.1590/S0103-50532010000600002

Edmundson, M., Thanh, N. T. K., & Song, B. (2013). Nanoparticles based stem cell tracking in regenerative medicine. In Theranostics (Vol. 3, Issue 8, pp. 573–582). DOI: https://doi.org/10.7150/thno.5477

Elizabeth, P. S., Néstor, M. M., & David, Q. G. (2019). Nanoparticles as dental drug-delivery systems. In Nanobiomaterials in Clinical Dentistry (pp. 567–593). DOI: https://doi.org/10.1016/B978-0-12-815886-9.00023-1

Elliott, J. A., Shibuta, Y., Amara, H., Bichara, C., & Neyts, E. C. (2013). Atomistic modelling of CVD synthesis of carbon nanotubes and graphene. Nanoscale, 5(15), 6662–6676. https://doi.org/10.1039/c3nr01925j DOI: https://doi.org/10.1039/c3nr01925j

Fan, C., Chu, L., & Ralph Rawls, H. (2016). Antimicrobial acrylic materials with in situ generated silver nanoparticles. Wiley Online Library, 100 B(2), 409–415. DOI: https://doi.org/10.1002/jbm.b.31963

Fan, W., Huang, P., & Chen, X. (2016). Overcoming the Achilles’ heel of photodynamic therapy. In Chemical Society Reviews (Vol. 45, Issue 23, pp. 6488–6519). Royal Society of Chemistry. DOI: https://doi.org/10.1039/C6CS00616G

Fayaz, A. M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P. T., & Venketesan, R. (2010). Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology, and Medicine, 6(1), 103–109. DOI: https://doi.org/10.1016/j.nano.2009.04.006

Forootanfar, H., Adeli-Sardou, M., Nikkhoo, M., Mehrabani, M., Amir-Heidari, B., Shahverdi, A. R., & Shakibaie, M. (2014). Antioxidant and cytotoxic effect of biologically synthesized selenium nanoparticles in comparison to selenium dioxide. Journal of Trace Elements in Medicine and Biology, 28, 75–79. DOI: https://doi.org/10.1016/j.jtemb.2013.07.005

Friedman, N. D., Temkin, E., & Carmeli, Y. (2016). The negative impact of antibiotic resistance. In Clinical Microbiology and Infection (Vol. 22, Issue 5, pp. 416–422). Elsevier B.V. DOI: https://doi.org/10.1016/j.cmi.2015.12.002

Gahlawat, G., Shikha, S., Chaddha, B. S., Chaudhuri, S. R., Mayilraj, S., & Choudhury, A. R. (2016). Microbial glycolipoprotein-capped silver nanoparticles as emerging antibacterial agents against cholera. Microbial Cell Factories, 15(1). DOI: https://doi.org/10.1186/s12934-016-0422-x

García-Pinel, B., Porras-Alcalá, C., Ortega-Rodríguez, A., Sarabia, F., Prados, J., Melguizo, C., & López-Romero, J. M. (2019). Lipid-based nanoparticles: Application and recent advances in cancer treatment. Nanomaterials, 9(4). DOI: https://doi.org/10.3390/nano9040638

Gnanadesigan, M., Anand, M., Ravikumar, S., Maruthupandy, M., Syed Ali, M., Vijayakumar, V., & Kumaraguru, A. K. (2012). Antibacterial potential of biosynthesised silver nanoparticles using Avicennia marina mangrove plant. Applied Nanoscience (Switzerland), 2(2), 143–147. DOI: https://doi.org/10.1007/s13204-011-0048-6

Golkar, Z., Bagasra, O., & Gene Pace, D. (2014). Bacteriophage therapy: A potential solution for the antibiotic resistance crisis. In Journal of Infection in Developing Countries (Vol. 8, Issue 2, pp. 129–136). DOI: https://doi.org/10.3855/jidc.3573

Gottfried, J. (2015). History Repeating ? Avoiding a Return to the Pre-Antibiotic Age. Digital Access to Scholarship at Harvard, 1–73. http://nrs.harvard.edu/urn-3:HUL.InstRepos:8889467

Gould, I. M., & Bal, A. M. (2013). New antibiotic agents in the pipeline and how hey can help overcome microbial resistance. Virulence, 4(2), 185–191. https://doi.org/10.4161/viru.22507 DOI: https://doi.org/10.4161/viru.22507

Govindaraju, K., Kiruthiga, V., Kumar, V. G., & Singaravelu, G. (2009). Extracellular synthesis of silver nanoparticles by a marine alga, Sargassum wightii grevilli and their Antibacterial effects. Journal of Nanoscience and Nanotechnology, 9(9), 5497–5501. DOI: https://doi.org/10.1166/jnn.2009.1199

Gradmann, C. (2011). Magic bullets and moving targets: Antibiotic resistance and experimental chemotherapy, 1900-1940. In Dynamis (Vol. 31, Issue 2, pp. 305–321). DOI: https://doi.org/10.4321/S0211-95362011000200003

Gu, H., Ho, P. L., Tong, E., Wang, L., & Xu, B. (2003). Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Letters, 3(9), 1261–1263. DOI: https://doi.org/10.1021/nl034396z

Hagens, W. I., Oomen, A. G., de Jong, W. H., Cassee, F. R., & Sips, A. J. A. M. (2007). What do we (need to) know about the kinetic properties of nanoparticles in the body? Regulatory Toxicology and Pharmacology, 49(3), 217–229. DOI: https://doi.org/10.1016/j.yrtph.2007.07.006

Hajipour, M. J., Fromm, K. M., Akbar Ashkarran, A., Jimenez de Aberasturi, D., Larramendi, I. R. de, Rojo, T., Serpooshan, V., Parak, W. J., & Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. In Trends in Biotechnology (Vol. 30, Issue 10, pp. 499–511). DOI: https://doi.org/10.1016/j.tibtech.2012.06.004

Helen, W. B., George, H. T., Daniel Jr., K. B., John, B., Robert, J. G., Ronald, N. J., Barbara, E. M., Robert, A. B., David, G., & for the Infectious Diseases Society of, A. (2013). 10 × ’20 Progress Development of New Drugs Active Against Gram-Negative Bacilli: An Update From the Infectious Diseases Society of America. Clinical Infectious Diseases, 56(12), 1685–1694. DOI: https://doi.org/10.1093/cid/cit152

Hetrick, E. M., Shin, J. H., & Schoenfisch, M. H. (2008). Anti-biofilm properties of nitric oxide-releasing silica nanoparticles. 8th World Biomaterials Congress 2008, 4, 1845.

Hirsch, E. F. (2008). “the treatment of infected wounds,” Alexis Carrel’s contribution to the care of wounded soldiers during World War I. Journal of Trauma - Injury, Infection and Critical Care, 64(SUPPL. 3), 209–210. DOI: https://doi.org/10.1097/TA.0b013e31816b307d

Hsueh, Y. H., Ke, W. J., Hsieh, C. Te, Lin, K. S., Tzou, D. Y., & Chiang, C. L. (2015). ZnO nanoparticles affect bacillus subtilis cell growth and biofilm formation. PLoS ONE, 10(6), 1–23. DOI: https://doi.org/10.1371/journal.pone.0128457

Huh, A. J., & Kwon, Y. J. (2011a). “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. In Journal of Controlled Release (Vol. 156, Issue 2, pp. 128–145).

Huh, A. J., & Kwon, Y. J. (2011b). “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. In Journal of Controlled Release. https://doi.org/10.1016/j.jconrel.2011.07.002 DOI: https://doi.org/10.1016/j.jconrel.2011.07.002

Hulkoti, N. I., & Taranath, T. C. (2014). Biosynthesis of nanoparticles using microbes-A review. In Colloids and Surfaces B: Biointerfaces (Vol. 121, pp. 474–483). DOI: https://doi.org/10.1016/j.colsurfb.2014.05.027

Hwang, I. sok, Hwang, J. H., Choi, H., Kim, K. J., & Lee, D. G. (2012). Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. Journal of Medical Microbiology, 61(PART12), 1719–1726. DOI: https://doi.org/10.1099/jmm.0.047100-0

Isaei, E., Mansouri, S., Mohammadi, F., Taheritarigh, S., & Mohammadi, Z. (2016). Novel combinations of synthesized ZnO NPs and ceftazidime: Evaluation of their activity against standards and new clinically isolated Pseudomonas aeruginosa. Avicenna Journal of Medical Biotechnology, 8(4), 169–174.

J. Blaser, M. (2016). Antibiotic use and its consequences for the normal microbiome. Science, 352(6285), 544–545. DOI: https://doi.org/10.1126/science.aad9358

Jahanshahi, M., & Babaei, Z. (2008). Protein nanoparticle: A unique system as drug delivery vehicles. African Journal of Biotechnology, 7(25), 4926–4934.

Jain, M. R., Zinjarde, S. S., Deobagkar, D. D., & Deobagkar, D. N. (2004). 2,4,6-Trinitrotoluene transformation by a tropical marine yeast, Yarrowia lipolytica NCIM 3589. Marine Pollution Bulletin, 49(9–10), 783–788. https://doi.org/10.1016/j.marpolbul.2004.06.007 DOI: https://doi.org/10.1016/j.marpolbul.2004.06.007

Jesline, A., John, N. P., Narayanan, P. M., Vani, C., & Murugan, S. (2015). Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus. Applied Nanoscience (Switzerland), 5(2), 157–162. DOI: https://doi.org/10.1007/s13204-014-0301-x

Jha, A. K., Prasad, K., & Prasad, K. (2009). Biosynthesis of Sb2O3 nanoparticles: A low-cost green approach. Biotechnology Journal, 4(11), 1582–1585. DOI: https://doi.org/10.1002/biot.200900144

Jiang, W., Mashayekhi, H., & Xing, B. (2009). Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environmental Pollution, 157(5), 1619–1625. DOI: https://doi.org/10.1016/j.envpol.2008.12.025

Jiang, X., Yang, L., Liu, P., Li, X., & Shen, J. (2010). The photocatalytic and antibacterial activities of neodymium and iodine doped TiO2 nanoparticles. Colloids and Surfaces B: Biointerfaces, 79(1), 69–74. DOI: https://doi.org/10.1016/j.colsurfb.2010.03.031

Jin, T., Sun, D., Su, J. Y., Zhang, H., & Sue, H. J. (2009). Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. Journal of Food Science, 74(1). DOI: https://doi.org/10.1111/j.1750-3841.2008.01013.x

Jin, Tony, & He, Y. (2011). Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. Journal of Nanoparticle Research, 13(12), 6877–6885. DOI: https://doi.org/10.1007/s11051-011-0595-5

Jones, N., Ray, B., & K. R.-F. microbiology. (2007). Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. 7 Federation of European Microbiological Societies, 279, 71–76. DOI: https://doi.org/10.1111/j.1574-6968.2007.01012.x

Joshi, M. D., & Müller, R. H. (2009). Lipid nanoparticles for parenteral delivery of actives. In European Journal of Pharmaceutics and Biopharmaceutics (Vol. 71, Issue 2, pp. 161–172). DOI: https://doi.org/10.1016/j.ejpb.2008.09.003

Jyoti, K., Baunthiyal, M., & Singh, A. (2016). Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences, 9(3), 217–227. DOI: https://doi.org/10.1016/j.jrras.2015.10.002

Kamat, P. V., Flumiani, M., & Hartland, G. V. (1998). Picosecond dynamics of silver nanoclusters. Photoejection of electrons and fragmentation. Journal of Physical Chemistry B, 102(17), 3123–3128. DOI: https://doi.org/10.1021/jp980009b

Keller, A. A., & Lazareva, A. (2013). Predicted Releases of Engineered Nanomaterials: From Global to Regional to Local. Environmental Science and Technology Letters, 1(1), 65–70. DOI: https://doi.org/10.1021/ez400106t

Kelly, S. A., Havrilla, C. M., Brady, T. C., Abramo, K. H., & Levin, E. D. (1998). Oxidative stress in toxicology: Established mammalian and emerging piscine model systems. In Environmental Health Perspectives (Vol. 106, Issue 7, pp. 375–384). Public Health Services, US Dept of Health and Human Services. DOI: https://doi.org/10.1289/ehp.98106375

Khan, I., Abdalla, A., & Qurashi, A. (2017). Synthesis of hierarchical WO3 and Bi2O3/WO3 nanocomposite for solar-driven water splitting applications. International Journal of Hydrogen Energy, 42(5), 3431–3439. DOI: https://doi.org/10.1016/j.ijhydene.2016.11.105

Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. In Arabian Journal of Chemistry (Vol. 12, Issue 7, pp. 908–931). DOI: https://doi.org/10.1016/j.arabjc.2017.05.011

Khezerlou, A., Alizadeh-Sani, M., Azizi-Lalabadi, M., & Ehsani, A. (2018). Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. In Microbial Pathogenesis (Vol. 123, pp. 505–526). DOI: https://doi.org/10.1016/j.micpath.2018.08.008

Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., Hwang, C. Y., Kim, Y. K., Lee, Y. S., Jeong, D. H., & Cho, M. H. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 3(1), 95–101. DOI: https://doi.org/10.1016/j.nano.2006.12.001

Kim, K. J., Sung, W. S., Suh, B. K., Moon, S. K., Choi, J. S., Kim, J. G., & Lee, D. G. (2009). Antifungal activity and mode of action of silver nano-particles on Candida albicans. BioMetals, 22(2), 235–242. DOI: https://doi.org/10.1007/s10534-008-9159-2

Klaus, T., Joerger, R., Olsson, E., & Granqvist, C. G. (1999). Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences of the United States of America, 96(24), 13611–13614. DOI: https://doi.org/10.1073/pnas.96.24.13611

Knetsch, M. L. W., & Koole, L. H. (2011). New strategies in the development of antimicrobial coatings: The example of increasing usage of silver and silver nanoparticles. In Polymers (Vol. 3, Issue 1, pp. 340–366). DOI: https://doi.org/10.3390/polym3010340

Kohanski, M. A., Dwyer, D. J., & Collins, J. J. (2010). How antibiotics kill bacteria: From targets to networks. In Nature Reviews Microbiology (Vol. 8, Issue 6, pp. 423–435). DOI: https://doi.org/10.1038/nrmicro2333

Kohli, A. G., Kierstead, P. H., Venditto, V. J., Walsh, C. L., & Szoka, F. C. (2014). Designer lipids for drug delivery: From heads to tails. In Journal of Controlled Release (Vol. 190, pp. 274–287). DOI: https://doi.org/10.1016/j.jconrel.2014.04.047

Krajewski, S., Prucek, R., Panacek, A., Avci-Adali, M., Nolte, A., Straub, A., Zboril, R., Wendel, H. P., & Kvitek, L. (2013). Hemocompatibility evaluation of different silver nanoparticle concentrations employing a modified Chandler-loop in vitro assay on human blood. Acta Biomaterialia, 9(7), 7460–7468. https://doi.org/10.1016/j.actbio.2013.03.016 DOI: https://doi.org/10.1016/j.actbio.2013.03.016

Kvítek, L., Panáček, A., Soukupová, J., Kolář, M., Večeřová, R., Prucek, R., Holecová, M., & Zbořil, R. (2008). Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). Journal of Physical Chemistry C, 112(15), 5825–5834. DOI: https://doi.org/10.1021/jp711616v

Kyriacou, S. V., Brownlow, W. J., & Xu, X. H. N. (2004). Using Nanoparticle Optics Assay for Direct Observation of the Function of Antimicrobial Agents in Single Live Bacterial Cells. Biochemistry, 43(1), 140–147. DOI: https://doi.org/10.1021/bi0351110

Lan, M., Zhao, S., Liu, W., Lee, C. S., Zhang, W., & Wang, P. (2019). Photosensitizers for Photodynamic Therapy. In Advanced Healthcare Materials (Vol. 8, Issue 13). Wiley-VCH Verlag. DOI: https://doi.org/10.1002/adhm.201900132

Lara, H. H., Ayala-Nuñez, N. V, Ixtepan-Turrent, L., & Rodriguez-Padilla, C. (2010). Mode of antiviral action of silver nanoparticles against HIV-1. Journal of Nanobiotechnology, 8(1), 1. DOI: https://doi.org/10.1186/1477-3155-8-1

Lee, N. Y., Ko, W. C., & Hsueh, P. R. (2019). Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. In Frontiers in Pharmacology (Vol. 10, Issue October, pp. 1–10). DOI: https://doi.org/10.3389/fphar.2019.01153

Lellouche, J., Friedman, A., Gedanken, A., & Banin, E. (2012). Antibacterial and antibiofilm properties of yttrium fluoride nanoparticles. International Journal of Nanomedicine, 7, 5611–5624. DOI: https://doi.org/10.2147/IJN.S37075

Lellouche, J., Friedman, A., Lahmi, R., Gedanken, A., & Banin, E. (2012). Antibiofilm surface functionalization of catheters by magnesium fluoride nanoparticles. International Journal of Nanomedicine, 7, 1175–1188. DOI: https://doi.org/10.2147/IJN.S26770

Lenski, R. E. (1998). Bacterial evolution and the cost of antibiotic resistance. International Microbiology, 1(4), 265–270.

letters, K. I.-C., & 2013, U. (2013). Carbon nanotubes-properties and applications: a review. Koreascience.or.Kr, 14(3), 131–144. https://www.koreascience.or.kr/journal/view.jsp?kj=HGTSB6&py=2013&vnc=v14n3&sp=131 DOI: https://doi.org/10.5714/CL.2013.14.3.131

Leung, Y. H., Man, A., & Ng, C. (2013). Mechanisms of Antibacterial Activity of MgO: Non-ROS Mediated Toxicity of MgO Nanoparticles Towards Escherichia coli. Wiley Online Library, 10(6), 1171–1183.

Leung, Y. H., Ng, A. M. C., Xu, X., Shen, Z., Gethings, L. A., Wong, M. T., Chan, C. M. N., Guo, M. Y., Ng, Y. H., Djurišic̈, A. B., Lee, P. K. H., Chan, W. K., Yu, L. H., Phillips, D. L., Ma, A. P. Y., & Leung, F. C. C. (2014). Mechanisms of antibacterial activity of mgo: Non-ros mediated toxicity of mgo nanoparticles towards escherichia coli. Small, 10(6), 1171–1183. DOI: https://doi.org/10.1002/smll.201302434

Li, P., Li, J., Wu, C., Wu, Q., & Li, J. (2005). Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. In Nanotechnology (Vol. 16, Issue 9, pp. 1912–1917). DOI: https://doi.org/10.1088/0957-4484/16/9/082

Lin, J., Nishino, K., Roberts, M. C., Tolmasky, M., Aminov, R. I., & Zhang, L. (2015). Mechanisms of antibiotic resistance. In Frontiers in Microbiology (Vol. 6, Issue FEB). https://doi.org/10.3389/fmicb.2015.00034 DOI: https://doi.org/10.3389/fmicb.2015.00034

Liu, P., Duan, W., Wang, Q., & Li, X. (2010). The damage of outer membrane of Escherichia coli in the presence of TiO2 combined with UV light. Colloids and Surfaces B: Biointerfaces, 78(2), 171–176. DOI: https://doi.org/10.1016/j.colsurfb.2010.02.024

Liu, Y., He, L., Mustapha, A., Li, H., Hu, Z. Q., & Lin, M. (2009). Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. Journal of Applied Microbiology, 107(4), 1193–1201. DOI: https://doi.org/10.1111/j.1365-2672.2009.04303.x

Llor, C., & Bjerrum, L. (2014). Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem. In Therapeutic Advances in Drug Safety (Vol. 5, Issue 6, pp. 229–241). DOI: https://doi.org/10.1177/2042098614554919

Loo, Y. Y., Rukayadi, Y., Nor-Khaizura, M. A. R., Kuan, C. H., Chieng, B. W., Nishibuchi, M., & Radu, S. (2018). In Vitro antimicrobial activity of green synthesized silver nanoparticles against selected Gram-negative foodborne pathogens. Frontiers in Microbiology, 9(JUL). DOI: https://doi.org/10.3389/fmicb.2018.01555

Lundberg, M. E., Becker, E. C., & Choe, S. (2013). MstX and a Putative Potassium Channel Facilitate Biofilm Formation in Bacillus subtilis. PLoS ONE, 8(5). DOI: https://doi.org/10.1371/journal.pone.0060993

Ma, H., & Liang, X. J. (2010). Fullerenes as unique nanopharmaceuticals for disease treatment. In Science China Chemistry (Vol. 53, Issue 11, pp. 2233–2240). DOI: https://doi.org/10.1007/s11426-010-4118-5

Mabena, L. F., Sinha Ray, S., Mhlanga, S. D., & Coville, N. J. (2011). Nitrogen-doped carbon nanotubes as a metal catalyst support. In Applied Nanoscience (Switzerland) (Vol. 1, Issue 2, pp. 67–77). DOI: https://doi.org/10.1007/s13204-011-0013-4

Mahalingam, S., Xu, Z., & Edirisinghe, M. (2015). Antibacterial Activity and Biosensing of PVA-Lysozyme Microbubbles Formed by Pressurized Gyration. Langmuir, 31(36), 9771–9780. DOI: https://doi.org/10.1021/acs.langmuir.5b02005

Mallakpour, S., & Behranvand, V. (2016). Polymeric nanoparticles: Recent development in synthesis and application. Express Polymer Letters, 10(11), 895–913. DOI: https://doi.org/10.3144/expresspolymlett.2016.84

Markowska, K., Grudniak, A. M., & Wolska, K. I. (2013). Silver nanoparticles as an alternative strategy against bacterial biofilms. In Acta Biochimica Polonica (Vol. 60, Issue 4, pp. 523–530). https://doi.org/10.18388/abp.2013_2016 DOI: https://doi.org/10.18388/abp.2013_2016

Miao, L., Wang, C., Hou, J., Wang, P., Ao, Y., Li, Y., Geng, N., Yao, Y., Lv, B., Yang, Y., You, G., & Xu, Y. (2016). Aggregation and removal of copper oxide (CuO) nanoparticles in wastewater environment and their effects on the microbial activities of wastewater biofilms. Bioresource Technology, 216, 537–544. DOI: https://doi.org/10.1016/j.biortech.2016.05.082

Michael, C. A., Dominey-Howes, D., & Labbate, M. (2014). The antimicrobial resistance crisis: Causes, consequences, and management. In Frontiers in Public Health (Vol. 2, Issue SEP, pp. 1–8). DOI: https://doi.org/10.3389/fpubh.2014.00145

Miranda, A., Blanco-Prieto, M. J., Sousa, J., Pais, A., & Vitorino, C. (2017). Breaching barriers in glioblastoma. Part II: Targeted drug delivery and lipid nanoparticles. In International Journal of Pharmaceutics (Vol. 531, Issue 1, pp. 389–410). DOI: https://doi.org/10.1016/j.ijpharm.2017.07.049

Mody, V., Siwale, R., Singh, A., & Mody, H. (2010). Introduction to metallic nanoparticles. Journal of Pharmacy and Bioallied Sciences, 2(4), 282. DOI: https://doi.org/10.4103/0975-7406.72127

Mohanraj, V. J., & Chen, Y. (2006). Nanoparticles-A Review. In Tropical Journal of Pharmaceutical Research (Vol. 5, Issue 1). DOI: https://doi.org/10.4314/tjpr.v5i1.14634

Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346–2353. DOI: https://doi.org/10.1088/0957-4484/16/10/059

Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., Parishcha, R., Ajaykumar, P. V., Alam, M., Kumar, R., & Sastry, M. (2001). Fungus-Mediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelial Matrix: A Novel Biological Approach to Nanoparticle Synthesis. Nano Letters, 1(10), 515–519. DOI: https://doi.org/10.1021/nl0155274

Müller, A., Behsnilian, D., Walz, E., Gräf, V., Hogekamp, L., & Greiner, R. (2016). Effect of culture medium on the extracellular synthesis of silver nanoparticles using Klebsiella pneumoniae, Escherichia coli and Pseudomonas jessinii. Biocatalysis and Agricultural Biotechnology, 6, 107–115. DOI: https://doi.org/10.1016/j.bcab.2016.02.012

Nabikhan, A., Kandasamy, K., Raj, A., & Alikunhi, N. M. (2010). Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids and Surfaces B: Biointerfaces, 79(2), 488–493. DOI: https://doi.org/10.1016/j.colsurfb.2010.05.018

Nadworny, P., Wang, J., & Tredget. (2010). Anti-inflammatory activity of nanocrystalline silver-derived solutions in porcine contact dermatitis. Journal of Inflammation. DOI: https://doi.org/10.1186/1476-9255-7-13

Narayanan, K. B., & Sakthivel, N. (2010). Biological synthesis of metal nanoparticles by microbes. In Advances in Colloid and Interface Science (Vol. 156, Issues 1–2, pp. 1–13). DOI: https://doi.org/10.1016/j.cis.2010.02.001

Natan, M., & Banin, E. (2017). From Nano to Micro: Using nanotechnology to combat microorganisms and their multidrug resistance. In FEMS Microbiology Reviews (Vol. 41, Issue 3, pp. 302–322). DOI: https://doi.org/10.1093/femsre/fux003

Nene, A., Singh Tuli, H., Kaur, P., Nene, A. G., Sharma, D., & Somani, P. R. (2019). Synergistic effect of copper nanoparticles and antibiotics to enhance antibacterial potential Metastasis View project Size controlled synthesis of magnetite nanoparticles for cancer hyperthermia and drug delivery View project Bio-Materials and Technology . In Bio-Materials and Technology (Vol. 1, Issue 1). www.bio-mat-tech.com

Nene, A., & Tuli, H. S. (2019). Synergistic effect of copper nanoparticles and antibiotics to enhance antibacterial potential. October.

Ngoy, J. M., Wagner, N., Riboldi, L., & Bolland, O. (2014). A CO2 capture technology using multi-walled carbon nanotubes with polyaspartamide surfactant. Energy Procedia, 63, 2230–2248. DOI: https://doi.org/10.1016/j.egypro.2014.11.242

Niemirowicz, K., Swiecicka, I., Wilczewska, A. Z., Misztalewska, I., Kalska-Szostko, B., Bienias, K., Bucki, R., & Car, H. (2014). Gold-functionalized magnetic nanoparticles restrict growth of pseudomonas aeruginosa. International Journal of Nanomedicine, 9(1), 2217–2224. DOI: https://doi.org/10.2147/IJN.S56588

Novo, D. J., Perlmutter, N. G., Hunt, R. H., & Shapiro, H. M. (2000). Multiparameter flow cytometric analysis of antibiotic effects on membrane potential, membrane permeability, and bacterial counts of Staphylococcus aureus and Micrococcus luteus. Antimicrobial Agents and Chemotherapy, 44(4), 827–834. DOI: https://doi.org/10.1128/AAC.44.4.827-834.2000

O’Brien, T. F., & Stelling, J. M. (1996). WHOMET: Removing obstacles to the full use of information about antimicrobial resistance. Diagnostic Microbiology and Infectious Disease, 25(4), 163–168. DOI: https://doi.org/10.1016/S0732-8893(96)00139-3

Odonkor, S. T., & Addo, K. K. (2011). Review article Bacteria Resistance to Antibiotics : Recent Trends and Challenges. 2(4), 1204–1210.

Otari, S. V., Patil, R. M., Nadaf, N. H., Ghosh, S. J., & Pawar, S. H. (2014). Green synthesis of silver nanoparticles by microorganism using organic pollutant: Its antimicrobial and catalytic application. Environmental Science and Pollution Research, 21(2), 1503–1513. DOI: https://doi.org/10.1007/s11356-013-1764-0

Padiyara, P., Inoue, H., & Sprenger, M. (2018). Global Governance Mechanisms to Address Antimicrobial Resistance. Infectious Diseases: Research and Treatment, 11, 117863371876788. DOI: https://doi.org/10.1177/1178633718767887

Pan, F., Xu, A., Xia, D., Yu, Y., Chen, G., Meyer, M., Zhao, D., Huang, C. H., Wu, Q., & Fu, J. (2015). Effects of octahedral molecular sieve on treatment performance, microbial metabolism, and microbial community in expanded granular sludge bed reactor. Water Research, 87, 127–136. DOI: https://doi.org/10.1016/j.watres.2015.09.022

Pan, W. Y., Huang, C. C., Lin, T. T., Hu, H. Y., Lin, W. C., Li, M. J., & Sung, H. W. (2016). Synergistic antibacterial effects of localized heat and oxidative stress caused by hydroxyl radicals mediated by graphene/iron oxide-based nanocomposites. Nanomedicine: Nanotechnology, Biology, and Medicine, 12(2), 431–438. DOI: https://doi.org/10.1016/j.nano.2015.11.014

Panáček, A., Kvítek, L., Smékalová, M., Večeřová, R., Kolář, M., Röderová, M., Dyčka, F., Šebela, M., Prucek, R., Tomanec, O., & Zbořil, R. (2018). Bacterial resistance to silver nanoparticles and how to overcome it. Nature Nanotechnology, 13(1), 65–71. DOI: https://doi.org/10.1038/s41565-017-0013-y

Panácek, A., Smékalová, M., Kilianová, M., Prucek, R., Bogdanová, K., Věcěrová, R., Kolár, M., Havrdová, M., Płaza, G. A., Chojniak, J., Zbǒril, R., & Kvítek, L. (2016). Strong and nonspecific synergistic antibacterial efficiency of antibiotics combined with silver nanoparticles at very low concentrations showing no cytotoxic effect. Molecules, 21(1), 1–17. DOI: https://doi.org/10.3390/molecules21010026

Pandiarajan, J., Suganya, T., & Krishnan, M. (2015). Antibiotic resistance: a universal-scale collapse in drug admin. World Journal of Pharmaceutical Research, 4(8), 848–860. www.wjpr.net

Paredes, D., Ortiz, C., & Torres, R. (2014). Synthesis, characterization, and evaluation of antibacterial effect of Ag nanoparticles against escherichia coli O157:H7 and methicillin-resistant staphylococcus aureus (MRSA). International Journal of Nanomedicine, 9(1), 1717–1729. DOI: https://doi.org/10.2147/IJN.S57156

Pécurto Cartaxo, A. L. (2018). Nanoparticles types and properties – understanding these promising devices in the biomedical area. International Journal of Nanomedicine, 1–8.

Peng, Z., Ni, J., Zheng, K., Shen, Y., Wang, X., He, G., Jin, S., & Tang, T. (2013). Dual effects and mechanism of TiO2 nanotube arrays in reducing bacterial colonization and enhancing C3H10T1/2 cell adhesion. International Journal of Nanomedicine, 8, 3093–3105. DOI: https://doi.org/10.2147/IJN.S48084

Prestinaci, F., Pezzotti, P., & Pantosti, A. (2015). Antimicrobial resistance: A global multifaceted phenomenon. In Pathogens and Global Health (Vol. 109, Issue 7, pp. 309–318). Maney Publishing. DOI: https://doi.org/10.1179/2047773215Y.0000000030

Puri, A., Loomis, K., Smith, B., Lee, J. H., Yavlovich, A., Heldman, E., & Blumenthal, R. (2009). Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. In Critical Reviews in Therapeutic Drug Carrier Systems (Vol. 26, Issue 6, pp. 523–580). DOI: https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i6.10

Qiu, W., Zheng, X., Wei, Y., Zhou, X., Zhang, K., Wang, S., Cheng, L., Li, Y., Ren, B., Xu, X., Li, Y., & Li, M. (2016). d-Alanine metabolism is essential for growth and biofilm formation of Streptococcus mutans. Molecular Oral Microbiology, 31(5), 435–444. DOI: https://doi.org/10.1111/omi.12146

Raghupathi, K. R., Koodali, R. T., & Manna, A. C. (2011). Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 27(7), 4020–4028. DOI: https://doi.org/10.1021/la104825u

Raja, B., & Singh, P. (2013). Synergistic effect of silver nanoparticles with the cephalexin antibiotic against the test strains – Bioresearch Bulletin. Bioresearch Bulletin. https://pdfs.semanticscholar.org/f70d/84ea22feb7ec4b0e3c87f05cd8722839e6f4.pdf

Rajendran, K., Anwar, A., Khan, N. A., & Siddiqui, R. (2017). Brain-Eating Amoebae: Silver Nanoparticle Conjugation Enhanced Efficacy of Anti-Amoebic Drugs against Naegleria fowleri. ACS Chemical Neuroscience, 8(12), 2626–2630. DOI: https://doi.org/10.1021/acschemneuro.7b00430

Rajesh, S., Patric Raja, D., Rathi, J. M., & Sahayaraj, K. (2012). Biosynthesis of silver nanoparticles using Ulva fasciata (Delile) ethyl acetate extract and its activity against Xanthomonas campestris pv. malvacearum. Journal of Biopesticides, 5(SUPPL.), 119–128.

Ramalingam, B., Parandhaman, T., & Das, S. K. (2016). Antibacterial Effects of Biosynthesized Silver Nanoparticles on Surface Ultrastructure and Nanomechanical Properties of Gram-Negative Bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Applied Materials and Interfaces, 8(7), 4963–4976. DOI: https://doi.org/10.1021/acsami.6b00161

Ramírez-Castillo, F. Y., Moreno-Flores, A. C., Avelar-González, F. J., Márquez-Díaz, F., Harel, J., & Guerrero-Barrera, A. L. (2018). An evaluation of multidrug-resistant Escherichia coli isolates in urinary tract infections from Aguascalientes, Mexico: Cross-sectional study. Annals of Clinical Microbiology and Antimicrobials, 17(1), 34. DOI: https://doi.org/10.1186/s12941-018-0286-5

Regea, G. (2018). Pharmacology & Clinical Research Review on Antibiotics Resistance and its Economic Impacts. Researchgate.Net.

Reilly, R. M. (2007). Carbon nanotubes: Potential benefits and risks of nanotechnology in nuclear medicine. In Journal of Nuclear Medicine (Vol. 48, Issue 7, pp. 1039–1042). DOI: https://doi.org/10.2967/jnumed.107.041723

Ren, G., Allaker, R. P., Vargas-Reus, M. A., Memarzadeh, K., Huang, J., & Ren, G. G. (2012). Antimicrobial activity of nanoparticulate metal oxides against peri-implantitis pathogens. International Journal of Antimicrobial Agents, 40, 135–139. DOI: https://doi.org/10.1016/j.ijantimicag.2012.04.012

Rikans, L. E., & Hornbrook, K. R. (1997). Lipid peroxidation, antioxidant protection and aging. In Biochimica et Biophysica Acta - Molecular Basis of Disease (Vol. 1362, Issues 2–3, pp. 116–127). DOI: https://doi.org/10.1016/S0925-4439(97)00067-7

Roguska, A., Belcarz, A., Pisarek, M., Ginalska, G., & Lewandowska, M. (2015). TiO2 nanotube composite layers as delivery system for ZnO and Ag nanoparticles - An unexpected overdose effect decreasing their antibacterial efficacy. Materials Science and Engineering C, 51, 158–166. DOI: https://doi.org/10.1016/j.msec.2015.02.046

Roy, A., Shivannavar, C., Gaddad, S. M., Thati, V., Roy, A. S., Prasad, M. V. N. A., Shivannavar, C. T., & Gaddad, S. M. (2010). Salmonella View project Doctoral studies View project Nanostructured Zinc Oxide Enhances The Activity Of Antibiotics Against Staphylococcus Aureus. In J Biosci Tech (Vol. 1, Issue 2). https://www.researchgate.net/publication/216303797

Roy, K., & Ghosh, C. K. (2017). Biological synthesis of metallic nanoparticles: A green alternative. In Nanotechnology: Synthesis to Applications (pp. 131–145). DOI: https://doi.org/10.1201/9781315116730-7

Saeed, K., & Khan, I. (2016). Preparation and characterization of single-walled carbon nanotube/nylon 6, 6 nanocomposites. Instrumentation Science and Technology, 44(4), 435–444. DOI: https://doi.org/10.1080/10739149.2015.1127256

Sánchez-López, E., Gomes, D., Esteruelas, G., Bonilla, L., Lopez-Machado, A. L., Galindo, R., Cano, A., Espina, M., Ettcheto, M., Camins, A., Silva, A. M., Durazzo, A., Santini, A., Garcia, M. L., & Souto, E. B. (2020). Metal-based nanoparticles as antimicrobial agents: An overview. In Nanomaterials (Vol. 10, Issue 2, p. 292). DOI: https://doi.org/10.3390/nano10020292

Sarwar, S., Chakraborti, S., Bera, S., Sheikh, I. A., Hoque, K. M., & Chakrabarti, P. (2016). The antimicrobial activity of ZnO nanoparticles against Vibrio cholerae: Variation in response depends on biotype. Nanomedicine: Nanotechnology, Biology, and Medicine, 12(6), 1499–1509. DOI: https://doi.org/10.1016/j.nano.2016.02.006

Savi, G. D., Bortoluzzi, A. J., & Scussel, V. M. (2013). Antifungal properties of Zinc-compounds against toxigenic fungi and mycotoxin. International Journal of Food Science and Technology, 48(9), 1834–1840. DOI: https://doi.org/10.1111/ijfs.12158

Scheffler, R. J., Colmer, S., Tynan, H., Demain, A. L., & Gullo, V. P. (2013). Antimicrobials, drug discovery, and genome mining. In Applied Microbiology and Biotechnology (Vol. 97, Issue 3, pp. 969–978). DOI: https://doi.org/10.1007/s00253-012-4609-8

Seshadri, S., Saranya, K., & Kowshik, M. (2011). Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnology Progress, 27(5), 1464–1469. https://doi.org/10.1002/btpr.651 DOI: https://doi.org/10.1002/btpr.651

Shahverdi, A. R., Fakhimi, A., Shahverdi, H. R., & Minaian, S. (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine: Nanotechnology, Biology, and Medicine, 3(2), 168–171. DOI: https://doi.org/10.1016/j.nano.2007.02.001

Shaikh, S., Nazam, N., Rizvi, S. M. D., Ahmad, K., Baig, M. H., Lee, E. J., & Choi, I. (2019). Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. In International Journal of Molecular Sciences (Vol. 20, Issue 10). DOI: https://doi.org/10.3390/ijms20102468

Shakibaie, M., Forootanfar, H., Golkari, Y., Mohammadi-Khorsand, T., & Shakibaie, M. R. (2015). Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. Journal of Trace Elements in Medicine and Biology, 29, 235–241. DOI: https://doi.org/10.1016/j.jtemb.2014.07.020

Shrivastava, S. R., Shrivastava, P. S., & Ramasamy, J. (2018). Responding to the challenge of antibiotic resistance: World Health Organization. In Journal of Research in Medical Sciences (Vol. 23, Issue 3). DOI: https://doi.org/10.4103/1735-1995.228593

Siddiqi, K. S., Husen, A., & Rao, R. A. K. (2018). A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of Nanobiotechnology, 16(1). DOI: https://doi.org/10.1186/s12951-018-0334-5

Siddiqi, K. S., ur Rahman, A., Tajuddin, & Husen, A. (2018). Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes. In Nanoscale Research Letters (Vol. 13). Springer New York LLC. DOI: https://doi.org/10.1186/s11671-018-2532-3

Singaravelu, G., Arockiamary, J. S., Kumar, V. G., & Govindaraju, K. (2007). A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids and Surfaces B: Biointerfaces, 57(1), 97–101. DOI: https://doi.org/10.1016/j.colsurfb.2007.01.010

Singh, R., Smitha, M. S., & Singh, S. P. (2014). The role of nanotechnology in combating multi-drug resistant bacteria. In Journal of Nanoscience and Nanotechnology (Vol. 14, Issue 7, pp. 4745–4756). DOI: https://doi.org/10.1166/jnn.2014.9527

Skalickova, S., Milosavljevic, V., Cihalova, K., Horky, P., Richtera, L., & Adam, V. (2017). Selenium nanoparticles as a nutritional supplement. In Nutrition (Vol. 33, pp. 83–90). DOI: https://doi.org/10.1016/j.nut.2016.05.001

Slavin, Y. N., Asnis, J., Häfeli, U. O., & Bach, H. (2017). Metal nanoparticles: understanding the mechanisms behind antibacterial activity. Journal of Nanobiotechnology, 15(1), 65. DOI: https://doi.org/10.1186/s12951-017-0308-z

Slomberg, D. L., Lu, Y., Broadnax, A. D., Hunter, R. A., Carpenter, A. W., & Schoenfisch, M. H. (2013). Role of size and shape on biofilm eradication for nitric oxide-releasing silica nanoparticles. ACS Applied Materials and Interfaces, 5(19), 9322–9329. DOI: https://doi.org/10.1021/am402618w

Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275(1), 177–182. DOI: https://doi.org/10.1016/j.jcis.2004.02.012

Sriramulu, M., & Sumathi, S. (2018). Biosynthesis of palladium nanoparticles using Saccharomyces cerevisiae extract and its photocatalytic degradation behaviour. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9(2). DOI: https://doi.org/10.1088/2043-6254/aac506

Stylianopoulos, T., & Jain, R. K. (2015). Design considerations for nanotherapeutics in oncology. In Nanomedicine: Nanotechnology, Biology, and Medicine (Vol. 11, Issue 8, pp. 1893–1907). DOI: https://doi.org/10.1016/j.nano.2015.07.015

Su, Y., Zheng, X., Chen, Y., Li, M., & Liu, K. (2015). Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles. Scientific Reports, 5. https://doi.org/10.1038/srep15824 DOI: https://doi.org/10.1038/srep15824

Subashini, J., Gopiesh Khanna, V., & Kannabiran, K. (2014). Anti-ESBL activity of silver nanoparticles biosynthesized using soil Streptomyces species. Bioprocess and Biosystems Engineering, 37(6), 999–1006. DOI: https://doi.org/10.1007/s00449-013-1070-8

Tan, S. Y., & Tatsumura, Y. (2015). Alexander Fleming (1881–1955): Discoverer of penicillin. In Singapore Medical Journal (Vol. 56, Issue 7, pp. 366–367). DOI: https://doi.org/10.11622/smedj.2015105

Thomas, S., Harshita, B. S. P., Mishra, P., & Talegaonkar, S. (2015). Ceramic Nanoparticles: Fabrication Methods and Applications in Drug Delivery. Current Pharmaceutical Design, 21(42), 6165–6188. DOI: https://doi.org/10.2174/1381612821666151027153246

Thota, S., Crans, D. C., Mei, W., & Wu, Q. (2017). Applications of Metal Nanoparticles in Medicine/Metal Nanoparticles as Anticancer Agents. In Metal Nanoparticles (pp. 169–190). DOI: https://doi.org/10.1002/9783527807093.ch7

Todar, K. (Department of B. (2011). Bacterial Resistance to Antibiotics (page 3) Antibiotic Method of resistance. In Todar’s Online Textbook of Bacteriology. http://www.mifami.org/eLibrary/Bacterial Resistance to Antibiotics.pdf

Tu, Y. S., & Fang, H. P. (2016). Destructive extraction of phospholipids from cell membranes by graphene and graphene oxide nanosheets. Scientia Sinica: Physica, Mechanica et Astronomica, 46(6). DOI: https://doi.org/10.1360/SSPMA2015-00428

Vahdati, M Reports, T. M. (2020). Synthesis and characterization of Selenium nanoparticles-Lysozyme nanohybrid System with Synergistic Antibacterial properties. Nature.Com.

Vahdati, M., & Tohidi Moghadam, T. (2020). Synthesis and Characterization of Selenium Nanoparticles-Lysozyme Nanohybrid System with Synergistic Antibacterial Properties. Scientific Reports, 10(1). DOI: https://doi.org/10.1038/s41598-019-57333-7

Van Hoek, A. H. A. M., Mevius, D., Guerra, B., Mullany, P., Roberts, A. P., & Aarts, H. J. M. (2011). Acquired antibiotic resistance genes: An overview. In Frontiers in Microbiology (Vol. 2, Issue SEP). Frontiers Research Foundation. DOI: https://doi.org/10.3389/fmicb.2011.00203

van Hoogevest, P., & Wendel, A. (2014). The use of natural and synthetic phospholipids as pharmaceutical excipients. In European Journal of Lipid Science and Technology (Vol. 116, Issue 9, pp. 1088–1107). Wiley-VCH Verlag. DOI: https://doi.org/10.1002/ejlt.201400219

Vazquez-Muñoz, R., Meza-Villezcas, A., Fournier, P. G. J., Soria-Castro, E., Juarez-Moreno, K., Gallego-Hernández, A. L., Bogdanchikova, N., Vazquez-Duhalt, R., & Huerta-Saquero, A. (2019). Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane. PLoS ONE, 14(11), 1–18. DOI: https://doi.org/10.1371/journal.pone.0224904

Verissimo, T. V., Santos, N. T., Silva, J. R., Azevedo, R. B., Gomes, A. J., & Lunardi, C. N. (2016). In vitro cytotoxicity and phototoxicity of surface-modified gold nanoparticles associated with neutral red as a potential drug delivery system in phototherapy. Materials Science and Engineering C, 65, 199–204. DOI: https://doi.org/10.1016/j.msec.2016.04.030

Vinoj, G., Pati, R., Sonawane, A., & Vaseeharan, B. (2015). In vitro cytotoxic effects of gold nanoparticles coated with functional acyl homoserine lactone lactonase protein from Bacillus licheniformis and their antibiofilm activity against proteus species. Antimicrobial Agents and Chemotherapy, 59(2), 763–771. DOI: https://doi.org/10.1128/AAC.03047-14

Vivek, M., Kumar, P. S., Steffi, S., & Sudha, S. (2011). Biogenic silver nanoparticles by gelidiella acerosa extract and their antifungal effects. Avicenna Journal of Medical Biotechnology, 3(3), 143–148. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3558184/

Wainwright, M., Maisch, T., Nonell, S., Plaetzer, K., Almeida, A., Tegos, G. P., & Hamblin, M. R. (2017). Photoantimicrobials—are we afraid of the light? In The Lancet Infectious Diseases (Vol. 17, Issue 2, pp. e49–e55). Lancet Publishing Group. DOI: https://doi.org/10.1016/S1473-3099(16)30268-7

Walkey, C., Sykes, E. A., & Chan, W. C. W. (2009). Application of semiconductor and metal nanostructures in biology and medicine. In Hematology / the Education Program of the American Society of Hematology. American Society of Hematology. Education Program (pp. 701–707). 2009.1.701 DOI: https://doi.org/10.1182/asheducation-2009.1.701

Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: Present situation and prospects for the future. In International Journal of Nanomedicine (Vol. 12, pp. 1227–1249). DOI: https://doi.org/10.2147/IJN.S121956

Weller, R. B. (2009). Nitric Oxide–Containing Nanoparticles as an Antimicrobial Agent and Enhancer of Wound Healing. Journal of Investigative Dermatology, 129(10), 2335–2337. DOI: https://doi.org/10.1038/jid.2009.149

Were, L. M., Bruce, B., Davidson, P. M., & Weiss, J. (2004). Encapsulation of nisin and lysozyme in liposomes enhances efficacy against Listeria monocytogenes. Journal of Food Protection, 67(5), 922–927. https://doi.org/10.4315/0362-028X-67.5.922 DOI: https://doi.org/10.4315/0362-028X-67.5.922

Wu, P., Xie, R., Imlay, K., & Shang, J. K. (2010). Visible-light-induced bactericidal activity of titanium dioxide codoped with nitrogen and silver. Environmental Science and Technology, 44(18), 6992–6997. DOI: https://doi.org/10.1021/es101343c

Xie, Y., He, Y., Irwin, P. L., Jin, T., & Shi, X. (2011). Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Applied and Environmental Microbiology, 77(7), 2325–2331. DOI: https://doi.org/10.1128/AEM.02149-10

Yamakami, K., Tsumori, H., Sakurai, Y., Shimizu, Y., Nagatoshi, K., & Sonomoto, K. (2013). Sustainable inhibition efficacy of liposome-encapsulated nisin on insoluble glucan-biofilm synthesis by Streptococcus mutans. Pharmaceutical Biology, 51(2), 267–270. DOI: https://doi.org/10.3109/13880209.2012.717227

Yu, B., Zhang, Y., Zheng, W., Fan, C., & Chen, T. (2012). Positive surface charge enhances selective cellular uptake and anticancer efficacy of selenium nanoparticles. Inorganic Chemistry, 51(16), 8956–8963. DOI: https://doi.org/10.1021/ic301050v

Yu, Q., Li, J., Zhang, Y., Wang, Y., Liu, L., & Li, M. (2016). Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells. Scientific Reports, 6, 26667. DOI: https://doi.org/10.1038/srep26667

Yuan, Y.-G., Peng, Q.-L., & Gurunathan, S. (2017). Effects of Silver Nanoparticles on Multiple Drug-Resistant Strains of Staphylococcus aureus and Pseudomonas aeruginosa from Mastitis-Infected Goats: An Alternative Approach for Antimicrobial Therapy. International Journal of Molecular Sciences Article Int. J. Mol. Sci, 18, 569. DOI: https://doi.org/10.3390/ijms18030569

Zain, M., Yasmeen, H., Yadav, S. S., Amir, S., Bilal, M., Shahid, A., & Khurshid, M. (2022). Applications of nanotechnology in biological systems and medicine. In Nanotechnology for hematology, blood transfusion, and artificial blood (pp. 215-235). Elsevier. DOI: https://doi.org/10.1016/B978-0-12-823971-1.00019-2

Zaman, S. Bin, Hussain, M. A., Nye, R., Mehta, V., Mamun, K. T., & Hossain, N. (2017). A Review on Antibiotic Resistance: Alarm Bells are Ringing. Cureus. DOI: https://doi.org/10.7759/cureus.1403

Zarrindokht Emami-Karvani. (2012). Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria. African Journal of Microbiology Research, 5(18), 1368–1373. DOI: https://doi.org/10.5897/AJMR10.159

Zhang, L., Pornpattananangkul, D., Hu, C.-M., & Huang, C.-M. (2010). Development of Nanoparticles for Antimicrobial Drug Delivery. Current Medicinal Chemistry, 17(6), 585–594. DOI: https://doi.org/10.2174/092986710790416290

Zhang, X. F., Liu, Z. G., Shen, W., & Gurunathan, S. (2016). Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. In International Journal of Molecular Sciences (Vol. 17, Issue 9). DOI: https://doi.org/10.3390/ijms17091534

Zhang, Y., Shareena Dasari, T. P., Deng, H., & Yu, H. (2015). Antimicrobial Activity of Gold Nanoparticles and Ionic Gold. Journal of Environmental Science and Health - Part C Environmental Carcinogenesis and Ecotoxicology Reviews, 33(3), 286–327. DOI: https://doi.org/10.1080/10590501.2015.1055161

Zhao, Y., & Jiang, X. (2013). Multiple strategies to activate gold nanoparticles as antibiotics. Nanoscale, 5(18), 8340–8350. DOI: https://doi.org/10.1039/c3nr01990j

Zonaro, E., Piacenza, E., Presentato, A., Monti, F., Dell’Anna, R., Lampis, S., & Vallini, G. (2017). Ochrobactrum sp. MPV1 from a dump of roasted pyrites can be exploited as bacterial catalyst for the biogenesis of selenium and tellurium nanoparticles. Microbial Cell Factories, 16(1). DOI: https://doi.org/10.1186/s12934-017-0826-2

Downloads

Published

2024-02-10

How to Cite

Naeem, A., Qaisrani, Z. N., Shazia, Noor, A., Hussain, I., & Raheem, A. (2024). ROUTE OF ADMINISTRATION OF NANOPARTICLES COMBATING A RESISTANT BACTERIUM. Pakistan Journal of Biotechnology, 21(1), 01–24. https://doi.org/10.34016/pjbt.2024.21.01.861