Population Fluctuations of Fall Armyworm (Spodoptera Frugiperda) and Physiomorphic Characterization of Maize Varieties Cultivated under Field Conditions in Punjab-Pakistan
DOI:
https://doi.org/10.34016/pjbt.2023.20.02.852Keywords:
Biotic stress, Infestation, Maize, Environmental conditions, Physiomorphic Characters, Correlation, Spodoptera frugiperda.Abstract
Fall Armyworm, Spodoptera frugiperda, the most notorious insectpest of maize, has led to major crop losses globally. The experiment was conducted to study impact of three maize varieties on S. frugiperda populations and their losses assessment. The results revealed that variety YH-1898 had highest germination rate, larval infestation, pupal density, number of tassels, total grain yield, (84.06±2.14%), (15.41±0.61 larvae/plant), (12.44±0.93 tassels/plant) and (9324.71±266.63 kg/acre) standard week-03 to standard week-23, respectively. The variety, FH-2313 was found to be the tallest with plant height, leaf area index, leaf and node count, and internodal distance (67.13±3.71 cm), (70.96±3.97 cm2), (11.44±0.44 leaves/plant), (11.44±0.44 nodes/plant) and (4.33±0.22 cm) respectively. S. frugiperda females deposited 66.13±2.07 eggs/plant with grain yield 6434.06±361.84 kg/acre. Correlation between environmental factors and S. frugiperda population elucidated a positive impact with maximum and minimum temperature (0.766 and 0.679) and negative with relative humidity during morning and evening (0.790 and 0.525).
Metrics
References
Abbas, A., F. Ullah, M. Hafeez, X. Han, M.Z.N. Dara, H. Gul and C.R. Zhao, Biological control of fall armyworm, Spodoptera frugiperda. Agron. 12: 2704 (2022). DOI: https://doi.org/10.3390/agronomy12112704
Abid, M., T. Batool, G, Siddique, S. Ali, R. Binyamin, M.J. Shahid, M. Rizwan, A.A. Alsahli and M.N. Alyemeni, Integrated nutrient management enhances soil quality and crop productivity in maize-based cropping system. Sustain. 12: 10214 (2020). DOI: https://doi.org/10.3390/su122310214
Ahammad, K.U., M.M. Rahman and M.R. Ali, Effect of hydropriming method on maize (Zea mays) seedling emergence. Bangl. J. Agri. Res. 39: 143-150 (2014). DOI: https://doi.org/10.3329/bjar.v39i1.20164
Ahmad, S. and M.A. Ibrahim, Influence of Meteorological Factors on Population Dynamics of Fall Armyworm, Spodoptera frugiperda, Lepidoptera: Noctuidae and its Varietal Susceptibility to FAW. Pro. 1st Int. Elec. Conf. Ent. 1: 1-15 (2021). DOI: https://doi.org/10.3390/IECE-10609
Anandhi, S., V.R. Saminathan, P. Yasodha, S.S.J. Roseleen, P.T. Sharavanan and V. Rajanbabu, Correlation of Fall armyworm Spodoptera frugiperda (JE Smith) with weather parameters in maize ecosystem. Int. J. Curr. Microbiol. Appl. Sci. 9: 1213-1218 (2020). DOI: https://doi.org/10.20546/ijcmas.2020.908.135
Argenta, G., P.R.F.D. Silva, and L. Sangoi, Leaf relative chlorophyll content as an indicator parameter to predict nitrogen fertilization in maize. Ciência Rural, 34: 1379-1387 (2004). DOI: https://doi.org/10.1590/S0103-84782004000500009
Baez‐Gonzalez, A.D., J.R. Kiniry, S.J. Maas, M.L. Tiscareno, C.J. Macias, J.L. Mendoza and J.R. Manjarrez, Large‐area maize yield forecasting using leaf area index-based yield model. Agron. J. 97: 418-425 (2005). DOI: https://doi.org/10.2134/agronj2005.0418
Bailey, P.T., In: Pests of field crops and pastures, identification and control. CSIRO publishing; Oct 8, (2007). DOI: https://doi.org/10.1071/9780643095328
Baudron, F., M.A. Zaman-Allah, I. Chaipa, N. Chari and P. Chinwada, Understanding the factors conditioning fall armyworm (Spodoptera frugiperda J.E. Smith) infestation in African smallholder maize fields and quantifying its impact on yield: a case study in Eastern Zimbabwe. Crop Pro. 120: 141-150 (2019). DOI: https://doi.org/10.1016/j.cropro.2019.01.028
Capinera, J.L., Fall Armyworm, Spodoptera frugiperda (JE Smith) (Insecta: Lepidoptera: Noctuidae). EENY098/IN255, Rev. 7: 2000 (2002). DOI: https://doi.org/10.32473/edis-in255-2000
Cheruiyot, D., C.A. Midega, J.O. Pittchar, J.A. Pickett, and Z.R. Khan, Farmers perception and evaluation of Brachiaria grass (Brachiaria spp.) genotypes for smallholder cereal-livestock production in East Africa. Agri. 10:268 (2020). DOI: https://doi.org/10.3390/agriculture10070268
Ciganda, V., A. Gitelson and J. Schepers, Non-destructive determination of maize leaf and canopy chlorophyll content. J. Plant Phy. 166: 157-167 (2009).
Ciganda, V., A. Gitelson and J. Schepers, Non-destructive determination of maize leaf and canopy chlorophyll content. J. Plant Phy. 166: 157-167 (2009). DOI: https://doi.org/10.1016/j.jplph.2008.03.004
Dey, A.K., M. Sharma and M.R. mMeshram, An analysis of leaf chlorophyll measurement method using chlorophyll meter and image processing technique. Pro. Comp. Sci. 85: 286-292 (2016). DOI: https://doi.org/10.1016/j.procs.2016.05.235
Du Plessis, J., In: Maize production, Pretoria, South Africa Department of Agriculture. pp. 1-38 (2003).
Durocher-Granger, L. T. Mfune, M. Musesha, A. Lowry, K. Reynolds, A. Buddie, G. Cafa, L. Offord, G. Chipabika, M. Dicke and M. Kenis, Factors influencing the occurrence of fall armyworm parasitoids in Zambia. J. Pest. Sci. 94: 1133-1146 (2021). DOI: https://doi.org/10.1007/s10340-020-01320-9
Fang, H.U.I., X.I.E. Zi-wen, L.I. Hai-gang, G.U.O. Yan, L.I. Bao-guo, L.I.U. Yun-ling and M.A. Yun-tao, Image-based root phenotyping for field-grown crops: An example under maize/soybean intercropping. J. Int. Agri. 21: 1606-1619 (2022). DOI: https://doi.org/10.1016/S2095-3119(20)63571-7
Florez, M., M.V. Carbonell and E. Martínez, Exposure of maize seeds to stationary magnetic fields: Effects on germination and early growth. Environ. Experim. Bot. 59: 68-75 (2007). DOI: https://doi.org/10.1016/j.envexpbot.2005.10.006
Gao, S., Z. Niu, N. Huang and X. Hou, Estimating the Leaf Area Index, height and biomass of maize using HJ-1 and RADARSAT-2. Int. J. App. Earth Obs. Geoinfo. 24: 1-8 (2013). DOI: https://doi.org/10.1016/j.jag.2013.02.002
Ghooshchi, F., M. Seilsepour, P. Jafari, Effects of Water Stress on Yield and Some Agronomic Traits of Maize- SC 301. American-Eurasian J. Agric. Environ. Sci. 4: 302-305 (2008).
Gilliot, J.M., J. Michelin, D. Hadjard and S. Houot, An accurate method for predicting spatial variability of maize yield from UAV-based plant height estimation: A tool for monitoring agronomic field experiments. Pre. Agri. 22: 897-921 (2021). DOI: https://doi.org/10.1007/s11119-020-09764-w
Girsang, S.S., S.E. Nurzannah, M.A. Girsang and R. Effendi, The distribution and impact of fall army worm (Spodoptera frugiperda) on maize production in North Sumatera. In IOP Conf. Ser. Ear. Environ. Sci. 484: 012099 (2020). DOI: https://doi.org/10.1088/1755-1315/484/1/012099
Grewal, P.S., Formulation and application technology In: Entomopathogenic nematology, Gaugler, R., ed. Wallingford UK, CABI publishing pp. 265-287 (2002). DOI: https://doi.org/10.1079/9780851995670.0265
Horikoshi, R.J., H. Vertuan, A.A. de Castro, K. Morrell, C. Griffith, A. Evans and G. Head, A new generation of Bt maize for control of fall armyworm (Spodoptera frugiperda). Pest Manag. Sci. 77: 3727-3736 (2021). DOI: https://doi.org/10.1002/ps.6334
Jawale. S.A., V.D. Patil, S.A. Jawale and U. Satpute, Effect of soil fertility levels on chlorophyll content of maize crop. J. Pharma. Phytochem. 6: 95-97 (2017).
Jing, W.A.N., C. Huang, C.Y. Li, H.X. Zhou, Y.L. Ren, Z.Y. Li and F.H. Wan, Biology, invasion and management of the agricultural invader: Fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Integr. Agri. 20: 646-663 (2021). DOI: https://doi.org/10.1016/S2095-3119(20)63367-6
Johnson, E.C., K.S. Fischer, G.O. Edmeades and A.F.E. Palmer, Recurrent Selection for Reduced Plant Height in Lowland Tropical Maize. Crop Sci. 26: 253-260 (1986). DOI: https://doi.org/10.2135/cropsci1986.0011183X002600020008x
Johnson, S.J., Migration and the life history strategy of the fall armyworm, Spodoptera frugiperda in the western hemisphere. Int. J. Trop. Insect Sci. 8: 543-549 (1987). DOI: https://doi.org/10.1017/S1742758400022591
Kalleshwaraswamy, C.M., M.S. Maruthi and H.B. Pavithra, Biology of invasive fall army worm Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) on maize. Ind. J. Ent. 80: 540-543 (2018). DOI: https://doi.org/10.5958/0974-8172.2018.00238.9
Kenis, M., G. Benelli, A. Biondi, P.A. Calatayud, R. Day, N. Desneux and K. Wu, K., Invasiveness, biology, ecology, and management of the fall armyworm, Spodoptera frugiperda. Entomol. Gener. (2022). DOI: https://doi.org/10.1127/entomologia/2022/1659
Kennedy, G.G. and N.P. Storer, Life systems of polyphagous arthropod pests in temporally unstable cropping systems. Ann. Rev. Ent. 45: 467-493 (2000). DOI: https://doi.org/10.1146/annurev.ento.45.1.467
Kimura, M., C.N. Kobori, D.B. Rodriguez-Amaya and P. Nestel, Screening and HPLC methods for carotenoids in sweetpotato, cassava and maize for plant breeding trials. Food Chem.100: 1734-1746 (2007). DOI: https://doi.org/10.1016/j.foodchem.2005.10.020
Lima, M.S., P.S.L. Silva, O.F. Oliveira, K.M. B. Silva and F.C.L. Freitas, Corn yield response to weed and fall armyworm controls.Planta Daninha 28: 103-111(2010). DOI: https://doi.org/10.1590/S0100-83582010000100013
Liu, G, Y. Yang, X. Guo, W. Liu, R. Xie, B. Ming, J. Xue, K. Wang, S. Li and P. Hou, coordinating maize source and sink relationship to achieve yield potential of 22.5 Mg ha-1. Field Crops Res. 283: 108544 (2022). DOI: https://doi.org/10.1016/j.fcr.2022.108544
Lukeba, J.C.L., R.K. Vumilia and K.C. Nkongolo, Growth and leaf area index simulation in maize (Zea mays L.) under small-scale farm conditions in a Sub-Saharan African Region. (2013). DOI: https://doi.org/10.4236/ajps.2013.43075
Mallapur, C.P., A.K. Naik, S. Hagari, S.T. Prabhu, R.K. Patil, Status of alien pest fall armyworm, Spodoptera frugiperda (JE Smith) on maize in Northern Karnataka. J. Entomol. Zool. Stud. 6: 432-436 (2018).
Maruthadurai, R. and R. Ramesh, Occurrence, damage pattern and biology of fall armyworm, Spodoptera frugiperda (JE smith) (Lepidoptera: Noctuidae) on fodder crops and green amaranth in Goa, India. Phyto. 48: 15-23 (2020).. DOI: https://doi.org/10.1007/s12600-019-00771-w
Matova, P.M., C.N. Kamutando, C. Magorokosho, D. Kutywayo, F. Gutsa and M. Labuschagne, Fall armyworm invasion, control practices and resistance breeding in Sub‐Saharan Africa. Crop sci. 60: 2951-2970 (2020). DOI: https://doi.org/10.1002/csc2.20317
Matthews, S. qne M. Khajeh Hosseini, Mean germination time as an indicator of emergence performance in soil of seed lots of maize (Zea mays). Seed Sci. Tech. 34: 339-347 (2006). DOI: https://doi.org/10.15258/sst.2006.34.2.09
Nguy-Robertson, A., A. Gitelson, Y. Peng, A. Viña, T. Arkebauer and D. Rundquist, Green leaf area index estimation in maize and soybean: Combining vegetation indices to achieve maximal sensitivity. Agron. J. 104: 1336-1347 (2012). DOI: https://doi.org/10.2134/agronj2012.0065
Nguy-Robertson, A., Y. Peng, T. Arkebauer, D. Scoby, J. Schepers and A. Gitelson, Using a simple leaf color chart to estimate leaf and canopy chlorophyll a content in Maize (Zea Mays). Comm. Soil Sci. Plant Anal. 46: 2734-2745 (2015). DOI: https://doi.org/10.1080/00103624.2015.1093639
Niassy, S., M.K. Agbodzavu, E. Kimathi, B. Mutune, E.F.M. Abdel-Rahman, D. Salifu and S. Subramanian, Bioecology of fall armyworm Spodoptera frugiperda (JE Smith), its management and potential patterns of seasonal spread in Africa. PloS one, 16: e0249042 (2021). DOI: https://doi.org/10.1371/journal.pone.0249042
Oehme, L.H., A.J. Reineke, T.M. Weiß, T. Würschum, X. He, and J. Müller, Remote sensing of maize plant height at different growth stages using uav-based digital surface models (DSM). Agron. 12: 958 (2022). DOI: https://doi.org/10.3390/agronomy12040958
Qiu, R., M. Zhang and Y. He, Field estimation of maize plant height at jointing stage using an RGB-D camera. Crop J. 10: 1274-1283 (2022). DOI: https://doi.org/10.1016/j.cj.2022.07.010
Raikar, S.D., B.S. Vyakarnahal, D.P. Biradar, V.K. Deshpande and B.S. Janagoudar, Effect of seed source, containers and seed treatment with chemical and biopesticide on storability of scented rice Cv. Mugad sugandha. Karnataka J. Agri. Sci. 24: 448-454 (2012).
Richardson, A.D., S.P. Duigan and G.P. Berlyn, An evaluation of noninvasive methods to estimate foliar chlorophyll content. New phyto. 153: 185-194 (2002). DOI: https://doi.org/10.1046/j.0028-646X.2001.00289.x
Rukundo, P., P. Karangwa, B. Uzayisenga, J.P. Ingabire, B.W. Waweru, J. Kajuga and J.P. Bizimana, Outbreak of fall armyworm (Spodoptera frugiperda) and its impact in Rwanda agriculture production. Sustain. Manag. Invasive Pests Afr. 139-157 (2020). DOI: https://doi.org/10.1007/978-3-030-41083-4_12
Shah, B., I.A. Khan, A. Khan, M.M.U. Din, M. Adnan, K. Junaid and I.U. Rahman, Determination of physio-morphic basis of resistance in different maize cultivars against insect pests. J. Entomol. Zool. Stud. 4: 317-321 (2016).
Skonieski, F.R., J. Viégas, T.N. Martin, J.L. Nörnberg, G.R. Meinerz, T.J. Tonin and M.T. Frata, Effect of seed inoculation with Azospirillum brasilense and nitrogen fertilization rates on maize plant yield and silage quality. Revista Brasileira de Zootecnia, 46: 722-730 (2017). DOI: https://doi.org/10.1590/s1806-92902017000900003
Swarnalakshmi, K., R. Prasanna, A. Kumar, S. Pattnaik, K. Chakravarty, YS. Shivay and A.K. Saxena, Evaluating the influence of novel cyanobacterial biofilmed biofertilizers on soil fertility and plant nutrition in wheat. Eur. J. Soil Bio. 55: 107-116 (2013). DOI: https://doi.org/10.1016/j.ejsobi.2012.12.008
Tadesse, A. and H.K. Kim, Yield related traits and yield of quality protein maize (Zea mays L.) affected by nitrogen levels to achieve maximum yield in the central Rift Valley of Ethiopia (2015).
Tahir, M., A. Tanveer, A. Ali, Abbas M and A. Wasaya, Comparative yield performance of different maize (Zea mays L.) hybrids under local conditions of Faisalabad-Pakistan. Pak. J. Life Soc. Sci. 6: 118-120 (2008).
Tait, M. A. and D.S. Hik, Is dimethyl sulfoxide a reliable solvent for extracting chlorophyll under field conditions? Photo. Res. 78: 87-91 (2003). DOI: https://doi.org/10.1023/A:1026045624155
Tas, T., Physiological and biochemical responses of hybrid maize (Zea mays L.) varieties grown under heat stress conditions. Peer. J. 10: e14141 (2022). DOI: https://doi.org/10.7717/peerj.14141
Taye, W., F. Laekemariam and G. Gidago, Seed germination, emergence and seedling vigor of maize as influenced by pre-sowing fungicides seed treatment. J. Agri. Res. Develop. 3: 35-41(2013).
Tendeng, E., B. Labou, M. Diatte, S. Djiba and K. Diarra, The fall armyworm Spodoptera frugiperda (JE Smith), a new pest of maize in Africa: biology and first native natural enemies detected. Int. J. Biol. Chem. Sci. 13: 1011-1026 (2019). DOI: https://doi.org/10.4314/ijbcs.v13i2.35
Tian, Y., B. Guan, D. Zhou, J. Yu, G. Li and Y. Lou, Responses of seed germination, seedling growth, and seed yield traits to seed pretreatment in maize (Zea mays L.). Sci. World J. (2014). DOI: https://doi.org/10.1155/2014/834630
Tollenaar, M.A.A.L.E.A., A. Ahmadzadeh and E.A. Lee, Physiological basis of heterosis for grain yield in maize. Crop Sci. 44: 2086-2094 (2004). DOI: https://doi.org/10.2135/cropsci2004.2086
Wilhelm, W.W., K. Ruwe and M.R. Schlemmer, Comparison of three leaf area index meters in a corn canopy. Crop Sci. 40: 1179-1183 (2000). DOI: https://doi.org/10.2135/cropsci2000.4041179x
Wu, D., Z. Cai, J. Han and H. Qin, Automatic kernel counting on maize ear using RGB images. Plant Meth. 16: 1-15 (2020). DOI: https://doi.org/10.1186/s13007-020-00619-z
Yigezu, G. and M. Wakgari, Local and indigenous knowledge of farmers management practice against fall armyworm (Spodoptera frugiperda) (JE Smith) (Lepidoptera: Noctuidae) A review. Ento. Zool. Stud. 8: 765-770 (2020).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Shamim Akhtar, Ferkhanda Farooq, Romana Iftikhar, Naima Din, Misbah Ashraf, Alina Zahid
This work is licensed under a Creative Commons Attribution 4.0 International License.