Effect of PGPR and Biogas Slurry on Growth and Yield Parameters of Pea under Salt Affected Conditions
DOI:
https://doi.org/10.34016/pjbt.2023.20.02.792Keywords:
PGPR, Biogas, Salinity, Peas, Growth, YieldAbstract
Salt stress is a significant abiotic plant growth restrictive factor; it is becoming a severe environmental threat. The microorganism in the rhizosphere especially fungi and bacteria can increase the plant production under stress conditions both by direct and indirect mechanisms. A field experiment was conducted to evaluate the potential of biogas slurry and plant growth promoting rhizobacteria (PGPR) at different levels of salinity to improve the growth and yield of pea (Pisum sativum ). In field experiment biogas slurry @ 600 kg ha-1 and 800 kg ha-1 and PGPR strain “bacillus subtilis” was applied along with 6 dS m-1 and 8 dS m-1 levels of salt stress in addition to recommended doses of nitrogen, potassium and phosphorus fertilizer. The results revealed that the combined application of PGPR and biogas slurry under normal soil conditions increased shoot length by 30.27% while under saline conditions it increased up-to 65.27%. Soil salinity reduced root length up-to 79.155% at 8 dS m-1 as compared to control. Application of biogas slurry improved 5.93% root length under salt stress as compared to respective control, on the other hand the combined application of PGPR and biogas slurry increased root length by 33.128% under normal conditions and under salinity stress it increased by 73.53%.Soil salinity reduced chlorophyll content 36.54% of pea decrease under salt stress, the application of biogas slurry under the same condition improved 29.26% chlorophyll content of pea but the combined application of PGPR and biogas slurry enhanced the chlorophyll contents 4.68% as compared to solely application of biogas slurry. The results clearly indicated that the combined application of PGPR and biogas slurry is the best source to enhance the growth and yield of pea under normal as well as under salinity stress.
Key Words: PGPR, Bio gas, Salinity, Peas, Growth, Yield.
Metrics
References
Abbasi, S., A. Sadeghi and N. Safaie, Streptomyces alleviate drought stress in tomato plants and modulate the expression of transcription factors ERF1 and WRKY70 genes. Sci. Horti. 265:109206 (2020). doi: 10.1016/j.scienta.2020.109206 DOI: https://doi.org/10.1016/j.scienta.2020.109206
Abdela, A. A., G. D. Barka and T. Degefu, Co-inoculation effect of Mesorhizobium ciceri and Pseudomonas fluorescens on physiological and biochemical responses of Kabuli chickpea (Cicer arietinum L.) during drought stress. Plant Phys. Repro.25, 359–369 (2020). doi: 10.1007/s40502-020-00511-x DOI: https://doi.org/10.1007/s40502-020-00511-x
Ahemad, M. and M. S. Khan, Pesticides as antagonists of rhizobia and the legume Rhizobium symbiosis: a paradigmatic and mechanistic outlook. Biochem. Mole. Bio. 1: 63-75 (2013). DOI: https://doi.org/10.12966/bmb.12.02.2013
Ahluwalia, O., P. C. Singh and R. Bhatia, A review on drought stress in plants: implications, mitigation and the role of plant growth promoting rhizobacteria. Resource. Environ. Sustain. :100032 (2021). doi: 10.1016/j.resenv.2021.100032 DOI: https://doi.org/10.1016/j.resenv.2021.100032
Akhtar, S. S., Amby, D. B., Hegelund, J. N., Fimognari, L., Großkinsky, D. K., Westergaard, J. C., & Roitsch, T. Bacillus licheniformis FMCH001 increases water use efficiency via growth stimulation in both normal and drought conditions. Front. Plant Sci. 11, 297. (2020). DOI: https://doi.org/10.3389/fpls.2020.00297
Andy, A. K., S. A. Masih and V. S. Gour, Isolation, screening and characterization of plant growth promoting rhizobacteria from rhizospheric soils of selected pulses. Biocata. Agri. Biotec., 27:101685. (2020). doi: 10.1016/j.bcab.2020.101685 DOI: https://doi.org/10.1016/j.bcab.2020.101685
Anonymous, Government of Pakistan, Agricultural statistics of Pakistan. Application of fertilizer and organic residues. Ecological Engineering, 17(2), 253-273 (2011).
Asghari, B., R. Khademian and B. Sedaghati, Plant growth promoting rhizobacteria (PGPR) confer drought resistance and stimulate biosynthesis of secondary metabolites in pennyroyal (Menthapu legium L.) under water shortage condition. Sci. Horti. 263:109132 (2020). doi: 10.1016/j.scienta.2019.109132 DOI: https://doi.org/10.1016/j.scienta.2019.109132
Belimov, A.A., A.I. Shaposhnikov, D. S. Syrova, A. A. Kichko, P.V. Guro, O.S. Yuzikhin, T.S. Azarova, A.L. Sazanova, E.A. Sekste, V.A. Litvinskiy, V.V. Nosikov, A.A. Zavalin, E.E. Andronov and V.I. Safronova, The Role of Symbiotic Microorganisms, Nutrient uptake and rhizosphere bacterial community in response of Pea (Pisum sativum L.) Genotypes to elevated Al concentrations in soil. Plants (Basel), 18, 9(12): (2020). 1801. doi: 10.3390/plants9121801. DOI: https://doi.org/10.3390/plants9121801
Bhattacharyya, P. N. and D. K. Jha, Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbio. Biotech. 28(4): 1327- 1350 (2012). DOI: https://doi.org/10.1007/s11274-011-0979-9
Boros L. and A. Wawer, Garden pea varietal susceptibility to Mycosphaerella pinodes and its effect on yield components of single plants. Vegetative Crops Res. Bulletin 70: 37-47 (2009). DOI: https://doi.org/10.2478/v10032-009-0004-0
Carlson, R., F. Tugizimana, P. A. Steenkamp, I. A. Dubery, A. I.Hassen and N. Labuschagne, Rhizobacteria-induced systemic tolerance against drought stress in Sorghum bicolor (L.) Moench. Microbio. Res. 232: (2020). 126388. doi: 10.1016/j.micres.2019.126388 DOI: https://doi.org/10.1016/j.micres.2019.126388
Cuin, T. A., S. A. Betts, R. Chalmandrier and S. Shabala, A root's ability to retain K+ correlates with salt tolerance in wheat. J. Exp. Bot. 59(10): 2697- 2706 (2008). DOI: https://doi.org/10.1093/jxb/ern128
Danish, S., M. Zafar-ul-Hye, F. Mohsin and M.Hussain, ACC-deaminase producing plant growth promoting rhizobacteria and biochar mitigate adverse effects of drought stress on maize growth. PLoS One, 15, e0230615 (2020). doi: 10.1371/journal.pone.0230615 DOI: https://doi.org/10.1371/journal.pone.0230615
Dhama S.K., N. K. Tyagi and P.B. Singh, Interrelationship and path analysis for seed yield and its component characters under eight environments in pea (Pisums ativum L.). Legu. Res. 33:87-94 (2010).
Dimkpa, C., T. Weinand and F. Ash, Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 32: 1682–1694 (2009). DOI: https://doi.org/10.1111/j.1365-3040.2009.02028.x
FAO, Food and agriculture organization of the United Nations. Soil map of the world- FAO World soil resources report, Rome, Italy (2022).
Gontia-Mishra, I., S. Sapre, R. Deshmukh, S. Sikdar and S. Tiwari, “Microbe-mediated drought tolerance in plants: current developments and future challenges,” in Plant Microbio. Sustain. Agri. eds A. N. Yadav, J. Singh, A. A. Rastegari, and N. Yadav (Cham: Springer), 351–379 (2020). DOI: https://doi.org/10.1007/978-3-030-38453-1_12
Grover, M., S. Bodhankar, A. Sharma, P. Sharma, J. Singh and L. Nain, PGPR mediated alterations in root traits: way toward sustainable crop production. Front. Sustain. Food Sys.4: 618230 (2021). doi: 10.3389/fsufs.2020.618230 DOI: https://doi.org/10.3389/fsufs.2020.618230
Hayat, R., S. Ali, U. Amara, R. Khalid and I. Ahmed, Soil beneficial bacteria and their role in plant growth promotion: a review. Ann. Micro. 60: 579-598 (2010). DOI: https://doi.org/10.1007/s13213-010-0117-1
Jamil, A., S. Riaz, M. Ashraf and M.R. Foolad, Gene expression profiling of plants under salt stress. Crit. Rev. Plant Sci. 30 (5): 435-458 (2011). DOI: https://doi.org/10.1080/07352689.2011.605739
Khan, N., A. Bano, S. Ali and M. A. Babar, Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regulation. 90: 189–203 (2020). doi:10.1007/s10725-020-00571-x DOI: https://doi.org/10.1007/s10725-020-00571-x
Kim, J., O.-G. Woo, Y. Bae, H. L. Keum, S. Chung and W. J. Sul, Enhanced drought and salt stress tolerance in Arabidopsis by Flavobacterium crocinum HYN0056T. J. Plant Bio. 63: 63–71 (2020). doi: 10.1007/s12374-020-09236-8 DOI: https://doi.org/10.1007/s12374-020-09236-8
Lin, Y., D. B. Watts, J. W. Kloepper, Y. Feng and H. A. Torbert, Influence of plant growth-promoting rhizobacteria on corn growth under drought stress. Comm. Soil Sci. Plant Anal.51:250–264 (2020). doi: 10.1080/00103624.2019.1705329 DOI: https://doi.org/10.1080/00103624.2019.1705329
Lutgtenberg, B. and F. Kamilova Plant-growth-promoting rhizobacteria. Ann. Rev.Microbio.63: 541–556 (2009). DOI: https://doi.org/10.1146/annurev.micro.62.081307.162918
Mastoi, A. H., Mangrio, W. M., Sahito, H. A., Sahito, F. I., Jatoi, F. A., & Solangi, S. P. (2023). Effects of Different Temperatures on the Biology of Acyrthosiphon pisum on Different Pea Cultivars. Journal of Applied Research in Plant Sciences, 4(02), 672–677. https://doi.org/10.38211/joarps.2023.04.02.170 DOI: https://doi.org/10.38211/joarps.2023.04.02.170
Maqbool. S., A. ul. Hassan, M. J. Akhtar and M. Tahir, Integrated use of biogas slurry and chemical fertilizer to improve growth and yield of okra. Sci. Lett. 2:56-59 (2014).
Mayak, S., T. Tirosh and B.R. Glick, Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physi. Biochem.42(6):565-572 (2004). DOI: https://doi.org/10.1016/j.plaphy.2004.05.009
Measham, T.G, Social learning through evaluation: a case study of overcoming constraints for management of dry land salinity. Environ. Man. 6: 1096-107 (2009). DOI: https://doi.org/10.1007/s00267-008-9265-5
Mishra, S. K., M. H. Khan, S. Misra, V. K. Dixit, S. Gupta and S. Tiwari, Drought tolerant Ochrobactrum sp. inoculation performs multiple roles in maintaining the homeostasis in Zea mays L. subjected to deficit water stress. Plant Physiol. Biochem.150: 1–14 (2020). DOI: https://doi.org/10.1016/j.plaphy.2020.02.025
Moon, Y.S. and S. Ali, Possible mechanisms for the equilibrium of ACC and role of ACC deaminase-producing bacteria. Appl. Microbio. Biotech.106 (3): 877-887. (2022). doi: 10.1007/s00253-022-11772-x. DOI: https://doi.org/10.1007/s00253-022-11772-x
Munns, R., James, R. A. and Lauchli, A. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 57(5), 1025–1043(2006). DOI: https://doi.org/10.1093/jxb/erj100
Nascimento, F. X., A. G. Hernández, B. R. Glick and M. J. Rossi, Plant growth-promoting activities and genomic analysis of the stress-resistant Bacillus megaterium STB1, a bacterium of agricultural and biotechnological interest. Biotech. Rep. 25 :e00406 (2020). doi: 10.1016/j.btre.2019.e00406 DOI: https://doi.org/10.1016/j.btre.2019.e00406
Steel, R.G.D., J.H. Torrie and D.A. Dicky, Principles and procedures of statistics. A biometrical approach.3rd Edition, McGraw Hill, Inc. Book Co.New York, 352-358 (1997).
Yeo, A.R., M.E. Yeo, S.A. Flowers and T.J. Flowers, Screening of rice (Oryza sativa L.) genotypes for physiological characters contributing to salinity resistance, and their relationship to overall performance. Theo. Appl. Gene.79: 377-384 (2010). DOI: https://doi.org/10.1007/BF01186082
Yu, F.B., X.P. Luo, C.F. Song, M.X. Zhang and S.D. Shan, Concentrated biogas slurry enhanced soil fertility and tomato quality. Plant Soil Sci.60(3): 262-268 (2010 DOI: https://doi.org/10.1080/09064710902893385
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Nafeesa Muslim, Naseem Akhtar, Sumreen Saddiq, Muhammad Imran, Kiran Yousaf, Naseem Sharif
This work is licensed under a Creative Commons Attribution 4.0 International License.