METHOD DEVELOPMENT AND VALIDATION OF TOTAL VIABLE COUNT USING SPECIFIED TECHNIQUES AND PERFORMANCE CHARACTERISTICS OF ISO/IEC 17025:2017 IN MICROBIOLOGICAL SAMPLES

Authors

  • Muhammad Amjad Qureshi Soil Bacteriology Section, Agri. Biotech. Research Institute, AARI, Faisalabad
  • Abid Niaz Soil Bacteriology Section, Agri. Biotech. Research Institute, AARI, Faisalabad.
  • Muhammad Asif Ali Soil Bacteriology Section, Agri. Biotech. Research Institute, AARI, Faisalabad.
  • Sajid ur Rahman Agri. Biotech. Research Institute, AARI, Faisalabad.
  • Shabana Ehsan Soil Bacteriology Section, Agri. Biotech. Research Institute, AARI, Faisalabad.
  • Shahid Nazir Agri. Biotech. Research Institute, AARI, Faisalabad.
  • Munazza Rafique Soil Bacteriology Section, Agri. Biotech. Research Institute, AARI, Faisalabad.
  • Hina Javed Soil Bacteriology Section, Agri. Biotech. Research Institute, AARI, Faisalabad.
  • Fraza Ijaz Soil Bacteriology Section, Agri. Biotech. Research Institute, AARI, Faisalabad.
  • Allah Nawaz Agri. Biotech. Research Institute, AARI, Faisalabad.
  • Muhammad Shahid Plant Pathology Section, AARI, Faisalabad.
  • Ifra Saleem Soil Chemistry Section, ISC&ES, Faisalabad

DOI:

https://doi.org/10.34016/pjbt.2024.21.02.933

Keywords:

Performance characteristics, validation techniques, precision, accuracy, LOD, LOQ, linearity, robustness, total viable count, microbiological method

Abstract

Biofertilizers are microbial based products, and their quality control is very much tricky job due to their biological nature and susceptibility to environmental factors. There are certain parameters that needs to be satisfied for the fitness of product. The principal parameter that showed the presence of microbes in the desired number is Total Viable Count besides other parameters etc. The series of lab studies were carried out at Biofertilizer Testing Laboratory (BTL-FSD), Soil Bacteriology Section, Faisalabad to evaluate the method development and validation characters mentioned in ISO/IEC 17025: 2017 standard for testing laboratories. The method developed keeping in view of (PSQCA standard) PS: 5330/2014 and amended according to the lab conditions and validated. Different techniques mentioned in clauses 7.2.2 and 7.2.2.3 were carried out in the lab environment. The bias expressed as LOG 10 were within the range of -0.024 to 0.034 and relative standard deviation (RSD) was <2%. The RSD of repeatability was 0.607% and reproducibility was 0.656 and 0.744%. The significance determined as t-stat was 0.280 well below the t-critical one and two tail i.e., 1.86 and 2.31, respectively and accuracy of method using robust mean was 99.8%. The measurement of uncertainty (MoU) was ±0.05 at 95% confidence interval and expanded uncertainty of the method was 0.1145. The LOD and LOQ of the method was evaluated as 0.090897 and 0.275445 expressed as LOG 10.  On the basis of techniques and characters under assessment, it was concluded that method of total viable count satisfied the requirements of ISO/IEC 17025:2017 standard and validated

Metrics

Metrics Loading ...

References

Aboul-Enein, H. Y., & Sibel A. (2012). Ozkan: Electroanalytical Methods in Pharmaceutical Analysis and Their Validation. Chromatographia, 75. 10.1007/s10337-012-2268-7. DOI: https://doi.org/10.1007/s10337-012-2268-7

Green, J. M. (1996). Peer Reviewed: A Practical Guide to Analytical Method Validation. Analytical Chemistry. 68, 9, 305A–309A. DOI: https://doi.org/10.1021/ac961912f

AOAC (2006). Presidential Task Force on Best Practice for Microbiological Methodology, US, FDA, Appendix G STWG Executive Summary, 7-16-06 7-16-06: 1-5.

Arkaban, H., Mirzaei, M., & Behzadi, M. (2021). Magnetic solid-phase extraction of lawsone using polyphenol-coated magnetic nanoparticles: synthesis, characterization and examination. Chromatographia, 84(5), 455–462. DOI: https://doi.org/10.1007/s10337-021-04019-w

AS 5013.14.1. (2010). Standards Australia. Australian Standard AS 5013.14.1. Food microbiology, Method 14.1:

Aslam, Z., Avais, M.A., Farooq, M.R., Rafique, M. A., Haq, M.Z.U., Nazarat, A., Afzal, A., & Khalid, M. A. (2021). Method development, validation and calculation of uncertainty for the determination of lambda-cyhalothrin from commercial formulations through reverse-phase liquid chromatographic approach. Journal of Agricultural Research, 59, 271–278.

Barnawal, D., Bharti, N., Tripathi, A., Pandey, S.S., Chanotiya, C.S., Kalra, A. (2016). ACC-deaminase-producing endophyte Brachybacterium paraconglomeratum strain SMR20 ameliorates Chlorophytum salinity stress via altering phytohormone generation. Journal of Plant Growth Regulation, 35 (2), 553–564. DOI: https://doi.org/10.1007/s00344-015-9560-3

Bramwell, P., Clarke, D., & de Silva, T. (2022). Microbiology Australia, 43(2), 57–60. DOI: https://doi.org/10.1071/MA22024

CDER, (U.S. Department of Health and Human Services Food and Drug Administration Centre for Drug Evaluation and Research Centre for Veterinary Medicine (CVM)). (2015). Guidance for Industry Bioanalytical Method Validation. http://www.fda.gov/downloads/drugs/ guidance compliance regulatory information guidancesucm386366.pdf.

Chaudhary, A.A., Shelke, A.V., & Jadhav, A.G. (2021). Development and Validation of rp-HPLC method of cabozantinib in active pharmaceutical ingredient and pharmaceutical dosage form. Journal of Pharmaceutical Research International. 2021; 15:81–90. DOI: https://doi.org/10.9734/jpri/2021/v33i1131247

Chesher, D. (2008). Evaluating assay precision. The Clinical Biochemist Reviews, 29(Suppl 1), S23.

Desta, K., & Amare, M. (2017). Validated UV-visible spectrometry using water as a solvent for determination of chloroquine in tablet samples. Chem Int, 3(3), 288-295.

Duygu, D. Y., & Udoh, A. U. (2017). Validation of microbiological testing methods. 2017. Trakya University Journal of Natural Sciences, 18(1): 65-69.

Eka, N., Heri, D.H., & Rohman, A., (2012). Validation of mercury analyzer for determination of mercury in snake fruit. International Food Research Journal, 19(3): 933-936.

Eurachem, (2012). Quantifying Uncertainty in Analytical Measurement EURACHEM/CITAC Guide 3rd ed. (2012), www.eurachem.org.

Eurachem, (2013). Accreditation for Microbiological Laboratories, Eurachem Guide, 32 pp.

Eurachem, (2014). The Fitness for Purpose of Analytical Methods, A Laboratory Guide to Method Validation and Related Topics, Eurachem Guide, 70 pp.

Farrance, I., Badrick, T., & Frenkel, R. (2018). Uncertainty in measurement: A review of the procedures for determining uncertainty in measurement and its use in deriving the biological variation of the estimated glomerular filtration rate. Practical Laboratory Medicine Journal. 2018, 5; 12: e00097. DOI: https://doi.org/10.1016/j.PLABM.2018.e00097

FDA, (2019). Guidelines for the Validation of Analytical Methods for the Detection of Microbial Pathogens in Foods and Feeds, Edition 3.0. U.S. Food and Drug Administration Foods Program, 2019.

González, G. A., & Herrador. Á. M., (2007). A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles. TrAC Trends in Analytical Chemistry, 26 (3), 227–238. DOI: https://doi.org/10.1016/j.trac.2007.01.009

González, A.G., Herrador, M.Á., & Asuero, A.G. (2010). Intra-laboratory assessment of method accuracy (trueness and precision) by using validation standards. Talanta, 82 (5), 1995–1998. DOI: https://doi.org/10.1016/j.talanta.2010.07.071

González, A.G., Herrador, M.Á., Asuero, A.G., & Martín, J. (2018). A practical way to ISO/ GUM measurement uncertainty for analytical assays including in-house validation data. Quality Control in Laboratory, 109. DOI: https://doi.org/10.5772/intechopen.72048

Gudžinskaitė, I., Stackevičienė, E., Liaudanskas, M., Zymonė, K., Žvikas, V., Viškelis, J., & Janulis, V. (2020). Variability in the qualitative and quantitative composition and content of phenolic compounds in the fruit of introduced American cranberry (Vaccinium macrocarpon Aiton). Plants, 9(10), 1379. DOI: https://doi.org/10.3390/plants9101379

Hanneman, S. K. (2008). Design, Analysis and Interpretation of Method-Comparison Studies. Advanced Critical Care, 2008; 19(2): 223–234. DOI: https://doi.org/10.1097/01.AACN.0000318125.41512.a3

Health Canada. (1994). Drugs Directorate Guidelines, Acceptable Methods, National Health and Welfare, Health Protection Branch, Canada, July 1994. http://www.hc-sc.gc.ca/hpfb-dgpsa/tpd-dpt/).

Health Protection Agency (HPA), (2005). The Microbiological Examination of Water Samples. National Standard Method QSOP 57, Issue 2. http://www.hpa-standard methods.org.uk.

ICH Q2 (R1). (2005). Validation of Analytical Procedures: Text and Methodology. Current Step 4 Version. 2005. [(accessed on 13 October, 2021)]. Available online: https://pacificbiolabs.com/wp-content/uploads/2017/12/Q2R1Guideline-4. pdf.

ILAC, G9. (2005). Guidelines for the Selection and Use of Reference Materials. The ILAC Secretariat c/- NATA PO Box 7507 Silverwater NSW 2128 Australia

INAB, (2012). Guide to method validation for quantitative analysis in chemical testing laboratories, INAB Guide PS15, 3 April 2012, www.inab.ie.

ISO 13528. (2005). Statistical methods for use in proficiency testing by interlaboratory comparisons. ISO, Geneva.

ISO 15189. (2012). Medical laboratories - Requirements for quality and competence. ISO, Geneva.

ISO 17034. (2016). General requirements for the competence of reference material producers. International Organization for Standardization, Geneva, 2016.

ISO 21748. (2010). Guidance for the use of repeatability, reproducibility and trueness estimates in measurement uncertainty estimation, ISO, Geneva.

ISO 5725. (1994). Accuracy (trueness and precision) of measurement methods and results – Parts 1-6, ISO Geneva.

ISO 5725. (2023 E). Accuracy (trueness and precision) of measurement methods and results, ISO Geneva.

ISO 7218. (2007). (A2: 2013). Microbiology of food and animal feeding stuffs - General requirements and guidance for micro biological examinations. https://www. standards.org.au/standards-catalogue/sa-snz/agriculture/ft-035/as-5013

ISO Guide 34. (2009). General requirements for the competence of reference material producers. International Organization for Standardization, Geneva, 2009.

ISO/IEC 17025. (2017). General requirements for the competence of testing and calibration laboratories. International Organization for Standardization / International Electrotechnical Committee, Geneva, 2017.

ISO/IEC 17043. (2010). Conformity assessment—General requirements for proficiency testing. International Organization for Standardization/International Electrotechnical Committee, Geneva, 2010.

ISO/IEC Guide 99. (2007en). International vocabulary of metrology Basic and general concepts and associated terms (VIM).

IUPAC, (2023). Compendium of Terminology in Analytical Chemistry, IUPAC Orange Book, prepared for publication by D Brynn Hibbert, The Royal Society of Chemistry, 2023 [ISBN 978-1-78262-947-4];

JCGM. (2008). Guide to the Expression of Uncertainty in Measurement (GUM) Report JCGM 100 (2008), www.bipm.org.

Kretzer, J.M., Biebl, M., & Miller, S. (2008). Sample Preparation – An Essential Prerequisite for High-Quality Bacteria Detection, In: Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems. ISBN:978-0-387-75112-2.

Kumar, N., Srivastava, P., Vishwakarma, K., Kumar, R., Kuppala, H., Maheshwari, S. K., & Vats, S. (2020). The rhizobium–plant symbiosis: state of the art. Plant Microbe Symbiosis, 1-20. DOI: https://doi.org/10.1007/978-3-030-36248-5_1

Liu, J., Zhang, J., Zhu, M., Wan, H., Chen, Z., Yang, N., Duan, J., Wei, Z., Hu, T., & Liu, F. (2022). Effects of Plant Growth Promoting Rhizobacteria (PGPR) strain Bacillus licheniformis with biochar amendment on potato growth and water use efficiency under reduced irrigation regime. Agronomy, 12, 1031 DOI: https://doi.org/10.3390/agronomy12051031

Magnusson, B., Näykki, T., Hovind, H., Krysell, M., & Sahlin, E. (2017). Handbook for calculation of measurement uncertainty in environmental laboratories, Nordtest Report. TR 537 (ed. 4), 2017.

McDowall, R.D. (2005). Effective and practical risk management options for computerised system validation. The Quality Assurance Journal, 9(3), 196–227. DOI: https://doi.org/10.1002/qaj.339

NATA – Technical report #17. (2012). Guidelines for the validation and verification of quantitative and qualitative methods, 2012.

Nazir, A., Iqbal, J., Iqbal, M., Abbas, M., Nisar, N. (2020). Method validation for bifenthrin emulsifiable concentrate and uncertainty calculation using gas chromatographic approach. Future Journal of Pharmaceutical Sciences, 6, 1–8. DOI: https://doi.org/10.1186/s43094-020-0022-9

NELAC. (2007). Microbiological Testing, Draft Interim Standard, Vol 1, Module 5, www.nelac-institute.org.

NordVal. (2009). Food microbiology protocol for the validation of alternative methods, http://www.nmkl.org/dokumenter/nordval/NordValProtocol.pdf.

Panhwar, A., Naeem, M. A., Memon, A. R., Ahmed, M., Haq, S., Haq, A., & Ibad, S. Z. (2020). ISO/IEC-17025 Standard and Steps towards Accreditation of Testing & Calibration Laboratories in Pakistan. Journal of Chemical, Biological and Physical Sciences, 10(2): 076-084. DOI: https://doi.org/10.24214/jcbps.C.10.2.07684

Pharmeuropa, (2015). Chapter 5.1.6. Alternative Methods for Control of Microbiological Quality, European Directorate for the Quality of Medicines & HealthCare. 27.1:8.

PS: 5330. (2014). Pakistan Standards, Specification for Biofertilizers, Pakistan Standards and Quality Control Authority, Pakistan.

Qureshi, M. A., Niaz, A., Ali, M. A., Ehsan, S., Javed, H., Rafique, M., Ijaz, F., Shehzad, A., Mujeeb, F., & Nawaz, A. (2023). Berseem-Rhizobium symbiosis boosted growth and yield in the presence of rhizobacteria. Journal of Pure and Applied Agriculture, 8(2), 11-20.

Sandle, T. (2013). Automated Microbial Identifications: A comparison of USP and EP approaches, American Pharmaceutical Review, 16(4): 56-61.

Sandle, T. (2014). Approaching the Selection of Rapid Microbiological Methods, Journal of Validation Technology, 20 (2): 1-10).

Sandle, T. (2015). Approaching Microbiological Method Validation. Journal of GXP Compliance, 19, 1-15.

Schneider, F., Maurer, C., Friedberg, R.C. (2017). International Organization for Standardization (ISO 15189, 2017). Annals of Laboratory Medicine, 37(5):365-370. DOI: https://doi.org/10.3343/alm.2017.37.5.365

Sedlák, J., Paprštein, F. (2011). Micropropagation of cranberry (Vaccinium macrocarpon) through shoot tip cultures: Short communication. Hortic. Sci. 2011; 38:159–162. DOI: https://doi.org/10.17221/115/2010-HORTSCI

Sereia, M. Perdoncini, M. R. F. G., Março, P. H., Parpinelli, R. S., de Lima, & Anjo, F. (2017). Techniques for the Evaluation of Microbiological Quality in Honey. 10.5772/67086. DOI: https://doi.org/10.5772/67086

Shabir, G. A. (2004). Step-by-step analytical methods validation and protocol in the quality system compliance industry. Journal of Validation Technology, 10(4):314-324.

Sinshaw, W., Kebede, A., Bitew, A., Tesfaye, E., Tadesse, M., Mehamed, Z., Yenew, B., Amare, M., Dagne, B., Diriba, G., Alemu, A., Getahun, M., Fikadu, D., Desta, K., Tola, H.H., 2019. Prevalence of tuberculosis, multidrug resistant tuberculosis and associated risk factors among smear negative presumptive pulmonary tuberculosis patients in Addis Ababa, Ethiopia. BMC Infectious Diseases, 19 (1).1-15 DOI: https://doi.org/10.1186/s12879-019-4241-7

Stephen, F. M. (2003). Calibration according to ISO/IEC 17025 in the operation of microbiological and chemical laboratories: an exercise in creating control charts for TPC and TVB-N. Project Report, 2003. 120 Reykjavik, Iceland.

Sunilkumar, B., Rao, D.P., & Subashini, V.P., (2020). Determination of inorganic ions in hydro-geochemical samples from Andhra Pradesh by ion chromatograph. Journal of Applied Geochemistry, 22, 67–71.

Sutton, S. (2005). Validation of Alternative Microbiology Methods for Product Testing: Quantitative and Qualitative Assays. Pharmaceutical Technology, 29(4): 118-122.

Theodorsson, E., Magnusson, B., & Leito, I. (2014). Bias in clinical chemistry. Bioanalysis, 6 (21): 2855-2875. DOI: https://doi.org/10.4155/bio.14.249

Tijare, L.K., Rangari, N.T., & Mahajan, U.N. (2016). A review on bioanalytical method development and validation. Asian Journal of Pharmaceutical and Clinical Research, 9(3), 2016. DOI: https://doi.org/10.22159/ajpcr.2016.v9s3.14321

Ullah, R., Abbas, Z., Bilal, M., Habib, F., Iqbal, J., Bashir, F., Noor, S., Qazi, M.A., Niaz, A., Baig, K. S., Rauf, A., Fatima, L., Akhtar, I., Ali, B., Ullah, M. I., Al-Hashimi, A., Elshikh, M. S., Ali, S., & Rehman, H. S. (2022). Method development and validation for the determination of potassium (K2O) in fertilizer samples by flame photometry technique. Journal of King Saud University– Science, 34(2022), 102070 DOI: https://doi.org/10.1016/j.jksus.2022.102070

US EPA. (2009). Method validation of U.S. Environmental Protection Agency microbiological methods of analysis. Prepared for The EPA forum on environmental measurements (FEM). The FEM Microbiology Action Team, FEM Document Number 2009-01, 7 Oct., 2009.

Veen, A.M.H.V.D., & Cox, M. G. (2021). Getting started with uncertainty evaluation using the Monte Carlo method in R. Accreditation and Quality Assurance, 26(3), 129–141 DOI: https://doi.org/10.1007/s00769-021-01469-5

Downloads

Published

2024-08-05

How to Cite

Qureshi, M. A., Niaz, A., Ali, M. A., Rahman, S. ur, Ehsan, S., Nazir, S., … Saleem, I. (2024). METHOD DEVELOPMENT AND VALIDATION OF TOTAL VIABLE COUNT USING SPECIFIED TECHNIQUES AND PERFORMANCE CHARACTERISTICS OF ISO/IEC 17025:2017 IN MICROBIOLOGICAL SAMPLES. Pakistan Journal of Biotechnology, 21(2), 416–427. https://doi.org/10.34016/pjbt.2024.21.02.933

Issue

Section

Research Articles

Most read articles by the same author(s)