PHOSPHORUS NUTRITION OF MUNGBEAN (Vigna Radiata L.) IN RELATION TO MYCORHIZOBACTERIAL INOCULATION
DOI:
https://doi.org/10.34016/pjbt.2024.21.02.932Keywords:
Vigna radiata L, Phosphorus, ACC-deaminase, Pseudomonas fluorescens, myccorhizal fungi, Phosphate-solubilizationAbstract
Microbial phosphate solubilization substantially supplements chemical phosphatic fertilization. Pakistani soils are generally P-deficient and require adequate P fertilization. However, due to very low P-use-efficiency, it becomes indispensable to device workable strategies to address these issues. We conducted a field experiment to compare the response of mungbean (Vigna radiata L.) to ACC-deaminase, phosphate-solubilizing rhizobacteria (PSRB), Pseudomonas fluorescens and arbuscular mycorrhizal (AM) fungi under varying levels of inorganic P (P1 = No P fertilizer, i.e. control, P2 = 30.0 kg P ha-1, and P3 = 60.0 kg P ha-1). We noted that mungbean showed significant enhancements in various plant attributes when supplied with P nutrition ranging from 8.2 to 45.9% at 50% recommended P fertilizer dose, i.e. 30 kg P ha-1 and 17.8 to 76.1% at 100% recommended P fertilizer dose, i.e. 60 kg P ha-1. In comparison to 30 kg P ha-1, 60 kg P ha-1 significantly increased (1.6 to 3.9 times) plant traits of mungbean. Microbial inoculants showed positive effects, with P. fluorescens increasing plant attributes from 5.2 to 31.2%, and AM fungi Glomus mossaea from 13.5 to 40.0%. The mycorrhizal inoculation was significantly better than rhizobacterial inoculation, with enhancements of 1.2 to 2.7 times in various growth attributes of mungbean. We conclude that microbial inoculation of arbuscular mycorrhizal fungi was found to be more efficient than rhizobacterial inoculation
Metrics
References
Ahmad, J., Anwar, S., Shad, A. A., Marwat, F. Y. S., Bibi, H., Ahmad, F., Noor, W., and Sadia, B. (2021). Yield and Nutritional Status of Mungbean as Influenced by Molybdenum and Phosphorus. Pakistan Journal of Agriculture Research, 34(1). DOI: https://doi.org/10.17582/journal.pjar/2021/34.1.144.153
Ahmad, N., & Rashid, M. (2003). Fertilizers and their use in Pakistan. Extension Bulletin. NFDC, Islambad.
Ali, M. A., Abbas, G., Mohy-ud-Din, Q., Ullah, K., Abbas, G., and Aslam, M. (2010). Response of mungbean (Vigna radiata) to phosphatic fertilizer under arid climate. Journal of Animal and Plant Sciences, 20(2), 83-86.
Arshad, M., Shaharoona, B., and Mahmood, T. (2008). Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere, 18(5), 611-620. DOI: https://doi.org/10.1016/S1002-0160(08)60055-7
Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S., and Smith, D. L. (2018). Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Sciences, 9, 402666. DOI: https://doi.org/10.3389/fpls.2018.01473
Balemi, T., and Negisho, K. (2012). Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: A review. Journal of Soil Science and Plant Nutrition, 12(3), 547-562. DOI: https://doi.org/10.4067/S0718-95162012005000015
Bashan, Y., Kamnev, A. A., and de-Bashan, L.E. (2013). Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: A proposal for an alternative procedure. Biology and Fertility of Soils, 49(4), 465-479. DOI: https://doi.org/10.1007/s00374-012-0737-7
Beattie, G.A. (2015). Curating communities from plants. Nature, 528(7582), 340-341. DOI: https://doi.org/10.1038/nature16319
Belimov, A. A., Dodd, I. C., Hontzeas, N., Theobald, J. C., Safronova, V. I., and Davies, W. J. (2009). Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signaling. New Phytologist, 181, 413-423. DOI: https://doi.org/10.1111/j.1469-8137.2008.02657.x
Dissanayaka, D. M. S. B., Ghahremani, M., Siebers, M., Wasaki, J., and Plaxton, W. C. (2021). Recent insights into the metabolic adaptations of phosphorus-deprived plants. Journal of Experimental Botany, 72(2), 199-223. DOI: https://doi.org/10.1093/jxb/eraa482
Glick, B. R. (2005). Modulation of plant ethylene levels by the bacterial enzyme ACC-deaminase. FEMS Microbiology Letters, 251, 1-7. DOI: https://doi.org/10.1016/j.femsle.2005.07.030
Hou, D., Yousaf, L., Xue, Y., Hu, J., Wu, J., Hu, X., Feng, N., & Shen, Q. (2019). Mung bean (Vigna radiata L.): Bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients, 11(6), 1238. DOI: https://doi.org/10.3390/nu11061238
Ibrahim, M., Iqbal, M., Tang, Y. T., Khan, S., Guan, D. X., and Li, G. (2022). Phosphorus mobilization in plant–soil environments and inspired strategies for managing phosphorus: A review. Agronomy, 12(10), 2539. DOI: https://doi.org/10.3390/agronomy12102539
Jha, A., Sharma, D., and Saxena, J. (2012). Effect of single and dual phosphate-solubilizing bacterial strain inoculations on overall growth of mung bean plants. Archives of Agronomy and Soil Science, 58(9): 967-981. DOI: https://doi.org/10.1080/03650340.2011.561835
Kaya, C., Şenbayram, M., Akram, N. A., Ashraf, M., Alyemeni, M. N., and Ahmad, P. (2020). Sulfur-enriched leonardite and humic acid soil amendments enhance tolerance to drought and phosphorus deficiency stress in maize (Zea mays L.). Scientific Reports, 10(1), 6432. DOI: https://doi.org/10.1038/s41598-020-62669-6
Khan, F., Siddique, A. B., Shabala, S., Zhou, M., and Zhao, C. (2023). Phosphorus plays key roles in regulating plants’ physiological responses to abiotic stresses. Plants, 12(15), 2861. DOI: https://doi.org/10.3390/plants12152861
Khan, M. S., Zaidi, A., Ahemad, M., Oves, M., and Wani, P. A. (2010). Plant growth promotion by phosphate solubilizing fungi–current perspective. Archives of Agronomy and Soil Science, 56(1), 73-98. DOI: https://doi.org/10.1080/03650340902806469
Kumar, A., Bahadur, I., Maurya, B. R., Raghuwanshi, R., Meena, V. S., Singh, D. K., and Dixit, J. (2015). Does a plant growth-promoting rhizobacteria enhance agricultural sustainability. Journal of Pure and Applied Microbiology, 9(1), 715-724.
Memon, K. S. (1996). Soil and Fertilizer Phosphorus. In: Bashir, E. and R. Bantel (ed.), Soil Science, (pp. 291-314). National Book Foundation, Islamabad.
Pii, Y., Mimmo, T., Tomasi, N., Terzano, R., Cesco, S., and Crecchio, C. (2015). Microbial interactions in the rhizosphere: Beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biology and Fertility of Soils, 51, 403-415. DOI: https://doi.org/10.1007/s00374-015-0996-1
Rahman, M., Imran, M., and Ashrafuzzaman, M. (2012). Effect of inoculant on yield and yield contributing characters of summer mungbean cultivars. Journal of Environmental Science and Natural Resources, 5(1), 211-215. DOI: https://doi.org/10.3329/jesnr.v5i1.11584
Ryan, J., Estefan, G., and Rashid, A. (2001). Soil and Plant Analysis Laboratory Manual. ICARDA.
Saleem, M., Arshad, M., Hussain, S., and Bhatti, A. S. (2007). Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Industrial Microbiology and Biotechnology, 34, 635-648. DOI: https://doi.org/10.1007/s10295-007-0240-6
Shaharoona, B., Arshad, M., and Zahir, Z.A. (2006). Effect of plant growth promoing rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and or nodulation in mung bean (Vigna radiate L.). Letters in Applied Microbiology, 42,155-159. DOI: https://doi.org/10.1111/j.1472-765X.2005.01827.x
Shaharoona, B., Naveed, M., Arshad, M., & Zahir, Z. A. (2008). Fertilizer dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (TriticumaestivumL.). Applied Microbiology and Biotechnology, 79,147-155. DOI: https://doi.org/10.1007/s00253-008-1419-0
Shahzad, S.M., Khalid, A., Arshad, M., and Kalil-ur-Rehman. (2010). Screening rhizobacteria containing ACC-deaminase for growth promotion of chickpea seedlings under axenic conditions. Soil and Environment, 29(1), 38-46.
Stearns, J. C., Shah, S., Greenberg, B. M., Dixon, D. G., & Glick, B. R. (2005). Tolerance of Transgenic canola expressing 1-aminocyclopropane-1-carboxylic acid deaminase to growth inhibition by nickel. Plant Physiology and Biochemistry, 43, 701-708. DOI: https://doi.org/10.1016/j.plaphy.2005.05.010
Suri, V. K., Choudhary, A. K., Chander, G., Verma, T. S., Gupta, M. K., and Dutt, N. (2011). Improving phosphorus use through co-inoculation of vesicular arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria in maize in an acidic Alfisol. Communications in Soil Science and Plant Analysis, 42(18), 2265-2273. DOI: https://doi.org/10.1080/00103624.2011.602451
Vishandas, Zia-ul-hassan, Arshad, M., and Shah A. N. (2006). Phosphorus fertigation at first irrigation due to its unavailability at sowing time prevents yield losses in Triticum aestivum L. Pakistan Journal of Botany, 38(5), 1439-1447.
Westerman, R. L. (1990). Soil Testing and Plant Analysis. Soil Science Society of America: Madison, Wisconsin, USA. DOI: https://doi.org/10.2136/sssabookser3.3ed
Yasmeen, T., Hameed, S., Tariq, M., and Iqbal, J. (2012). Vigna radiata root associated mycorrhizae and their helping bacteria for improving crop productivity. Pakistan Journal of Botany, 44(1), 87-94
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Zia-ul-hassan, Nizamuddin Depar, Sana Saleem Rajput, Javaria Afzal Arain, Inzamam Jamali, Naheed Akhter Talpur, Hajra Khan, Inayatullah Rajpar
This work is licensed under a Creative Commons Attribution 4.0 International License.