BIOMETRICAL ANALYSES OF ELITE WHEAT VARIETIES USING HALF DIALLEL METHOD IN HEXAPLOID WHEAT (TRITICUM AESTIVUM L.)
DOI:
https://doi.org/10.34016/pjbt.2024.21.02.907Keywords:
Combining ability, Grain yield, Specific combining ability, Hexaploidy wheatAbstract
Wheat is a major food grain crop grown around the world. Its importance lies in its grain quality and yield production towards various genotypes. The present research was conducted to assess genotypes at two locations viz. Barley and Wheat Research institute Tando Jam and Wheat Research institute Sakrand. This experiment was conducted under 6 x 6 half-diallel fashion design using six wheat parents as TD-1, TJ-83, Imdad-2005, Moomal-2002, SKD-1, and Mehran-89. The results showed that TJ-83 revealed early 75% heading and maturity. However, the genotype TD-1 provoked markable performance for different characters in both locations, including tillers plant-1, spikelet’s spike-1, grains spike-1, grain yield plant-1, 1000 grain weight, and harvest index. Among F1 hybrids, including TJ-83 × Moomal-2002 and TD-1 × TJ-83, displayed favorable characteristics, with the hybrid Imdad-2005 × Mehran-89 contributing more tillers plant-1 and TD-1 × Mehran-89 having longer spikes. For GCA effects, TD-1 demonstrated negative effects for heading and maturity revealing positive effects for other key traits, making it a promising parental material for improved wheat cultivar development. The cross TD-1 × TJ-83 proved positive SCA effects for distinctive characteristics. Correlation analysis depicted positive associations between spike length, spikelet’s spike-1, grains spike-1, and grain yield plant-1 underscoring their importance in high-yielding wheat cultivar development. Traits exhibited high heritability estimates, suggesting strong genetic control and early-generation improvement possibilities. Gene action analysis revealed an overall type of dominant gene action, confirming an over-dominant type for most traits. The concise findings indicate that the research provides valuable insights for enhancing wheat breeding programs, identifying superior genotypes, and understanding their desirable responses under diverse environmental conditions
Metrics
References
Adel, M. M., & Ali, E. A. (2013). Gene Action and Combining Ability in a Six Parent Diallel Cross of. Asian Journal of crop science, 5, 14-23. DOI: https://doi.org/10.3923/ajcs.2013.14.23
Adhikari, A., Ibrahim, A. M., Rudd, J. C., Baenziger, P. S., & Sarazin, J. B. (2020). Estimation of heterosis and combining abilities of US winter wheat germplasm for hybrid development in Texas. Crop Science, 60(2), 788-803. DOI: https://doi.org/10.1002/csc2.20020
Ali, M. A., Nawab, N. N., Abbas, A., Zulkiffal, M., & Sajjad, M. (2009). Evaluation of selection criteria in Cicer arietinum L. using correlation coefficients and path analysis. Australian Journal of Crop Science, 3(2), 65.
AL-jana, M. H., & Al-Burki, F. R. (2020). Study of path coefficient and some indicators of vegetation and genotype components of wheat (Ttriticum aestivum l.). European Journal of Molecular & Clinical Medicine, 7(09), 20-24.
Askander, H. S., Salih, M. M., & Altaweel, M. S. (2021). heterosis and combining ability for yield and its related traits in bread wheat (Triticum aestivum L.). Plant Cell Biotechnology and Molecular Biology, 22(33&34), 46-53.
Bagherikia, S., Soughi, H., & Khodarahmi, M. (2023). Genetic analysis of yield and yield-related traits in bread wheat (Triticum aestivum L.) under complete irrigation and drought stress in reproductive phase conditions. Environmental Stresses in Crop Sciences, 16(4), 1139-1152.
Burdak A, Prakash V., Kakralya B.L, Gupta D. and R. Choudhary. (2023). Heterotic performance and inbreeding depression for yield and component traits in bread wheat (Triticum aestivum L. em. Thell.). International Journal of Environment and Climate Change,13(3):56-64 DOI: https://doi.org/10.9734/ijecc/2023/v13i31681
Chaudhary, P. L., Kumar, B., & Kumar, R. (2023). Analysis of heterosis and heterobeltiosis for earliness, yield and its contributing traits in okra (Abelmoschus esculentus L. Moench). International Journal of Plant and Soil Science, 35(11), 84-98. DOI: https://doi.org/10.9734/ijpss/2023/v35i112949
Dedaniya, A. P., Pansuriya, A. G., Vekaria, D. M., Memon, J. T., & Vekariya, T. A. (2018). Estimation of heterosis in different crosses of bread wheat (Triticum aestivum L.). International Journal of Chemical Studies, 6(3), 3622-3628.
Devidas Patel, D. P., Moitra, P. K., Shukla, R. S., & Singh, S. K. (2015). Heterosis and combining ability estimates in partial diallel crosses of bread wheat (Triticum aestivum L.).
El Nahas, M. M., & Ali, O. A. (2021). Estimation of combining ability and heterosis for wheat yield and its components under water stress conditions. Egyptian Journal of Agronomy, 43(2), 277-293. DOI: https://doi.org/10.21608/agro.2021.77971.1268
El Ameen, M. T., Khaled, A. G., & Elshazly, I. F. (2020). Genetic Analysis of Eight Parents and their 28 Hybrids under Salinity Tolerance in Bread Wheat. Asian Journal of Research in Biosciences, 37-48..
Farooq, J., Khaliq, I., Khan, A. S., & Pervez, M. A. (2010). Studying the genetic mechanism of some yield contributing traits in wheat (Triticum aestivum L.). International Journal Agriculture & Biology, 12(2), 241-246.
GDP Agriculture Gross Domestic Product Pakistan Report (2022-2023). https://www.finance.gov.pk/survey/chapters_23/02_Agriculture. Dated: 25th May,2022.
Griffing, B. R. U. C. E. (1956). Concept of general and specific combining ability about diallel crossing systems. Australian journal of biological sciences, 9(4), 463-493. DOI: https://doi.org/10.1071/BI9560463
Hassan, G., Mohammad, F., Afridi, S. S., & Khalil, I. H. (2007). Combining ability in the f~ 1 generation of diallel cross for yield and yield components in wheat. Sarhad Journal of Agriculture, 23(4), 937.
Ijaz, S., & Kaukab, S. (2017). Exploitation of heterosis and combining ability effects in wheat breeding. Journal of Agricultural Research (03681157), 55(2).
Kalhoro, F. A., Rajpar, A. A., Kalhoro, S. A., Mahar, A., Ali, A., Otho, S. A., & Baloch, Z. A. (2015). Heterosis and combing ability in F1 population of hexaploidy wheat (Triticum aestivum L.). American Journal of Plant Sciences, 6(7), 1011-1026. DOI: https://doi.org/10.4236/ajps.2015.67107
Kamal, N., Khanum, S., Siddique, M., Saeed, M., Ahmed, M. F., Kalyar, M. T. A., & Mahmood, B. (2023). Heterosis and combining ability studies in 5x5 diallel crosses of maize inbred lines. Journal of Applied Research in Plant Sciences, 4(01), 419-424. DOI: https://doi.org/10.38211/joarps.2022.3.1.50
Kamaluddin, K., Singh, R. M., & Khan, M. A. (2011). Combining ability analyses protein content and maturity traits in spring wheat (Triticum aestivum L.).
Kaukab, S., Ijaz, S., Khaliq, I., Mahmood, K., & Saleem, U. (2013). Genetic analysis for yield and some yield-related traits in spring wheat (Triticum aestivum L.). Journal of Agriculture Research, 51(3)16-20.
Kaur, G. D., Kumar, R., & Singh, S. (2022). Heterosis and combining ability estimation in hexaploid wheat (Triticum aestivum L.) with the feasibility of developing F1 hybrid in half diallel mating design. International Journal of Plant and Environment, 8(03), 61-69. DOI: https://doi.org/10.18811/ijpen.v8i03.08
Kumar, A., Razdan, A. K., Sharma, V., Kumar, N., & Kumar, D. (2018). Study of heterosis and inbreeding depression for economic and biochemical traits in bread wheat (Triticum aestivum L.). Journal of Pharmacognosy and Phytochemistry, 7(4), 558-564.
Kutlu, I., & Olgun, M. (2015). Determination of genetic parameters for yield components in bread wheat.
Ljubičić, N., Popović, V., Ćirić, V., Kostić, M., Ivošević, B., Popović, D., and Janković, S. (2021). Multivariate interaction analysis of winter wheat grown in an environment of limited soil conditions. Plants, 10(3), 604. DOI: https://doi.org/10.3390/plants10030604
Ljubičić, N., Petrović, S., Dimitrijević, M., & Hristov, N. (2016). Gene actions involved in the inheritance of yield-related traits in bread wheat (Triticum aestivum L.). Journal of Crop Breeding and Genetics, 2(2),47-53. DOI: https://doi.org/10.9755/ejfa.2016-02-117
Nagar, S. S., Kumar, P., Singh, C., Gupta, V., Singh, G., & Tyagi, B. S. (2019). Assessment of heterosis and inbreeding depression for grain yield and contributing traits in bread wheat. Journal of Cereal Research, 11(2), 125-130. DOI: https://doi.org/10.25174/2249-4065/2019/89648
Pagliosa, E. S., Benin, G., Beche, E., da Silva, C. L., Milioli, A. S., & Tonatto, M. (2017). Identifying superior spring wheat genotypes through diallel approaches. Australian Journal of Crop Science, 11(1), 112-117. DOI: https://doi.org/10.21475/ajcs.2017.11.01.289
Poudel, M. R., Poudel, P. B., Puri, R. R., & Paudel, H. K. (2021). Variability, correlation and path coefficient analysis for agro-morphological traits in wheat genotypes (Triticum aestivum L.) under normal and heat stress conditions. DOI: https://doi.org/10.3126/ijasbt.v9i1.35985
Rajput, R. S., & Kandalkar, V. S. (2018). Combining ability and heterosis for grain yield and its attributing traits in bread wheat (Triticum aestivum L.). Journal of Pharmacognosy and Phytochemistry, 7(2), 113-119.
Raiyani A.M., Kapadia V.N., Boghara M.C., Bhalala K.C. and D.A. Patel (2015). Combining ability and gene action for different characters in bread wheat (Triticum aestivum L.). The Bioscan, 10(4):2159-2162.
Mohammadi, R., Etminan, A., & Shoshtari, L. I. A. (2019). Agro-physiological characterization of durum wheat genotypes under drought conditions. Experimental Agriculture, 55(3), 484-499. DOI: https://doi.org/10.1017/S0014479718000133
Saeed, M., & Khalil, I. H. (2017). Combining ability and narrow-sense heritability in wheat (Triticum aestivum L.) under rainfed environment. Sarhad Journal of Agriculture, 33(1), 22-29. DOI: https://doi.org/10.17582/journal.sja/2017.33.1.22.29
Sami-ul-Allah, S. U. A., Khan, A. S., Ali Raza, A. R., & Sajjad Sadique, S. S. (2010). Gene action analysis of yield and yield-related traits in spring wheat (Triticum aestivum).
Schwarzwälder, L., Thorwarth, P., Zhao, Y., Reif, J. C., & Longin, C. F. H. (2022). Hybrid wheat: quantitative genetic parameters and heterosis for quality and rheological traits as well as baking volume. Theoretical and Applied Genetics, 135(4), 1131-1141. DOI: https://doi.org/10.1007/s00122-022-04039-6
Sharma, R., & Sood, V. (2022). Genetic variability studies in bread wheat (Triticum aestivum L.) under multi-environment trials in Northern Hills Zone. In Biological Forum–An International Journal.
Sprague, G. F., & Tatum, L. A. (1942). General vs. specific combining ability in single crosses of corn. DOI: https://doi.org/10.2134/agronj1942.00021962003400100008x
Steel, R. G. D., & Torrie, J. H. (1960). Principles and procedures of statistics. Principles and procedures of statistics.
Thapa, R. S., Sharma, P. K., Pratap, D., Singh, T., & Kumar, A. (2019). Assessment of genetic variability, heritability and genetic advance in wheat (Triticum aestivum L.) genotypes under normal and heat stress environment. Indian journal of agricultural research, 53(1), 51-56. DOI: https://doi.org/10.18805/IJARe.A-5095
Zare-Kohan, M., & Heidari, B. (2014). Diallel cross-study for estimating genetic components underlying wheat grain yield. Journal of Biological and Environmental Sciences, 8(22), 12-18.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Dalel Khan Mandan, Shah Nawaz Marri, Zahoor Ahmed Soomro, Qamar-ud-Din Chachar
This work is licensed under a Creative Commons Attribution 4.0 International License.