PURIFICATION AND CHARACTERIZATION OF AMYLASE PRODUCED FROM PROBIOTIC LACTOBACILLUS PLANTARUM CS FOR INDUSTRIAL APPLICATIONS

Authors

  • Ujunwa Felicia Nwachukwu Enugu State University of Science and Technology, Faculty of Applied Natural Sciences, Department of Applied Microbiology and Brewing.
  • Uzoamaka Ogechi George-Okafor Enugu State University of Science and Technology, Faculty of Applied Natural Sciences, Department of Applied Microbiology and Brewing.
  • Kelechi Nkechinyere Mba-Omeje Enugu State University of Science and Technology, Faculty of Applied Natural Sciences, Department of Applied Microbiology and Brewing.
  • Amara Chioma Ezeme-Nwafor Caritas University Amorji-Nike Enugu State, Faculty of Natural Sciences, Department of Microbiology.
  • Ifeoma Agatha Onah Caritas University Amorji-Nike Enugu State, Faculty of Natural Sciences, Department of Microbiology.
  • Ifeanyi Jude Victor Egbuji Caritas University Amorji-Nike Enugu State, Faculty of Natural Sciences, Department of Microbiology.

DOI:

https://doi.org/10.34016/pjbt.2024.21.02.890

Keywords:

amylase, characterization, Lactobacillus plantarum CS, purification.

Abstract

Previous studies have demonstrated that probiotic Lactobacillus plantarum CS was able to generate an appreciable amount of extracellular amylase, hence the need to purify and characterize it. The aim of the study was to purify and characterize crude amylase from probiotic Lactobacillus plantarum CS for its industrial applications Three purification steps including ammonium sulphate precipitation, ion exchange chromatography on carboxymethyl sephadex and gel filtration on Sephadex G-75 were utilized. The homogeneity of the purified enzyme was confirmed using sodium deodocyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The purified amylase was characterized on different parameters including substrates hydrolyses, pH and temperature activity and stability profiles. The general purification elution profile revealed two different peaks of amylase activities with outstanding one having a molecular weight of 59.7kDa. Its purification fold was 4.0 with specific activity of 16.44U/mg protein and enzyme yield of 3%.  Temperature optimal activity and stability was at 400C and 7.5 for pH activity and stability. Mangenese (Mn2+) (135.17%), tween 80 (128.30%) and some food condiments garlic, thyme, ginger, and tumeric) significantly (p> 0.05) enhanced amylase activity (≥262.40%). However, selenium (Se4+) and hydrogen peroxide (H2O2) were observed to have greatest inhibiting effect (≥30.9%) on the enzyme. Substrate hydrolysis profiles showed that the amylase hydrolyzed all the test starchy substrates with the highest hydrolytic potential on indigenous sweet potato starch (Km value/ Vmax of 1.33mg/ml/ 7.89ml). The rate of hydrolysis of other test substrates had yam> rice>cassava>corn with km values ≤ 4.0mg/ml and Vmax ≤ 25ml.  The obtained results gave an insight that amylase produced from Lactobacillus plantarum CS met with the possessed properties suitable for any industrial application especially in food

Metrics

Metrics Loading ...

References

Ahmed, K., I. Mohamed, A. Amira and F. Noha, (2013). Purification, sequencing, and biochemical characterization of a novel calcium-independent α-amylase AmyTVE from Thermoactinomyces vulgaris. Appl. Biochem. Biotechnol. 170, 483-497 DOI: https://doi.org/10.1007/s12010-013-0201-7

Aladejana, O., O. Oyedeji, O. Omoboye and M. Bakare, (2020). Production, purification and characterization of thermostable alpha amylase from Bacillus subtilis Y25 isolated from decaying yam (Dioscorearotundata) tuber. Notulae Sci. Biol. 12(1), 154-171 DOI: https://doi.org/10.15835/nsb12110521

Bano, S., S. Qader, A. Aman, M. Syed and A. Azhar, (2011). Purification and characterization of novel α-amylase from Bacillus subtilis KIBGE HAS. AAPS Pharm. Sci. & Technol.12(1), 255–261 DOI: https://doi.org/10.1208/s12249-011-9586-1

Chaudhary, R. S. Jain, K. Muralidhar and M. Gupta, (2006). Purification of bubaline luteinizing hormone by gel filtration chromatography in the presence of blue dextran. Process Biochem. 41, 562–566 DOI: https://doi.org/10.1016/j.procbio.2005.10.003

Cordeiro, C.A., M.L. Martins and A.B. Luciano, (2002). Production and properties of α-amylase from thermophilic Bacillus sp. Braz. J. of Microbiol. 33, 57-61 DOI: https://doi.org/10.1590/S1517-83822002000100012

Dogan, S., P. Turan, M. Dogan, M. Alkan and O. Arslan, (2007). Inhibition kinetics of polyphenol oxidase by glutamic acid. Eur. Food Res. & Technol. 225, 67-73 DOI: https://doi.org/10.1007/s00217-006-0383-0

Duong-Ly, K.C. and S.B. Gabelli, (2014a). Gel filtration chromatography (Size exclusion chromatography) of proteins. Methods in Enzymol. 105-114 DOI: https://doi.org/10.1016/B978-0-12-420119-4.00009-4

Duong-Ly, K.C. and S.B. Gabelli, (2014b). Using ion exchange chromatography to purify a recombinantly expressed protein. Methods in Enzymol. 541, 95-103 DOI: https://doi.org/10.1016/B978-0-12-420119-4.00008-2

Ekka, A. and N. Namdeo, (2018). Screening, isolation and characterization of amylase producing bacteria and optimization for production of amylase.J. Biotechnol. & Biochem. 4(2), 50 – 56

Erhimu, L.O., F.O. Tasie, U.F. Nwachukwu and C.N. Obodo, (2019). Determination of phytochemical and antimicrobial activities of corn starch extract on Escherichia coli and Salmonella typhi. Nig. J. Microbiol. 33, 4660-4667

George-Okafor, U., U. Nwachukwu and E. Mike-Anosike, (2018). Screening and identification of prodominant Lactobacillus spp. from fermented milled-mixed corn-soybean wastes. Int. J. Sci. & Eng. Res. 9(2), 2050-2060

George-Okafor, U.O., U.F. Nwachukwu and A.C. Ezeme-Nwafor, (2022). Optimization of amylase from Lactobacillus plantarum CS by submerged fermentation using agro waste substrate. Adv. in Biosci. & Bioeng. 10(1), 11-18 DOI: https://doi.org/10.11648/j.abb.20221001.12

Hye-Yeon, J., K. Na-Ri, L. Hye-Won, C. Hye-Jeong, C. Woo-Jae, K. Ye-Seul, K. Dam-Seul and S. Jae-Hoon, (2016). Characterization of a novel maltose-forming α-amylase from Lactobacillus plantarum subsp. plantarum ST-III. J. Agricul. & Food Chem.64(11) 2307-2314

Irshad, M., Z. Anwar, M. Gulfraz, H. Butt, A. Ejaz and H. Nawaz, (2012). Purification and characterization of α-amylase from Ganoderma tsuage growing in waste bread medium. Afr. J. Biotechnol. 11(33), 8288-8294 DOI: https://doi.org/10.5897/AJB11.3643

Kanpiengjai, A., S. Lumyong, P. Wongputtisin, D. Haltrich, T. Nguyen and C. Khanongnuch, (2015b). Efficient secretory expression of gene encoding a broad pH-stable maltose-forming amylase from Lactobacillus plantarum S21 in food-grade Lactobacilli host. Appl. Biol. Chem. 58, 901–908 DOI: https://doi.org/10.1007/s13765-015-0121-z

Karim, K., A. Husaini, N. Sing, F. Sinang, H. Roslan and H. Hussain, (2018). Purification of an alpha amylase from Aspergillus flavus NSH9 and molecular characterization of its nucleotide gene sequence. 3 Biotech. 8(4), 204 DOI: https://doi.org/10.1007/s13205-018-1225-z

Keskin, S. and N. Ertunga, (2017), Purification, immobilization and characterization of thermostable α-amylase from a thermophilic bacterium Geobacillus sp. TF14. Turk. J. Biochem.42(6) 633-640, DOI: https://doi.org/10.1515/tjb-2016-0123

Kosanović, M., B. Milutinović, S. Goč, N. Mitić and M. (2017). Janković, Ion-exchange chromatography purification of extracellular vesicles. Biotech. 1:63(2), 65-71 DOI: https://doi.org/10.2144/000114575

Laemmli U.K, (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nat. 227, 680-685 DOI: https://doi.org/10.1038/227680a0

Lim, S.J., S.H. Oslan and S. N. Oslan, (2020) Purification and characterization of thermostable α-amylases from microbial sources. BioRes. 15(1), 2005-2029 DOI: https://doi.org/10.15376/biores.15.1.2005-2029

Lowry, O. H., N.J. Rosebrough, A.L. Farr and R.J. Randall, (1951). "Protein measurement with the Folin phenol reagent". J. Biol. Chem. 193(1), 265–275 DOI: https://doi.org/10.1016/S0021-9258(19)52451-6

Lu, M., Y. Fang, H. Li and S. Wang, (2010). Isolation of a novel cold-adapted amylase-producing bacterium and study of its enzyme production conditions. Annals Microbiol. 60, 557–563 DOI: https://doi.org/10.1007/s13213-010-0090-8

Madhuri, K., B. Ashutosh, K. Kamlesh and D. Koushalya, (2012). Production, partial purification and characterization of α-amylase from high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) degrading Bacillussubtilis BMT4i (MTCC 9447). Turk. J. Biochem. 37(4) 463–470 DOI: https://doi.org/10.5505/tjb.2012.07279

McDonald, A.G. and K.F. (2022). Tipton, Parameter reliability and understanding enzyme function, Mol. 27 263-277 DOI: https://doi.org/10.3390/molecules27010263

Mohamed, A, (2004). Purification and characterization of α-amylase from the infective juveniles of the nematode Heterorhabditis bacteriophora. Biochem. & Mol. Biol. 139(1) 1-9 DOI: https://doi.org/10.1016/j.cbpc.2004.03.014

Narayana, K. and M. (2008). Vijayalakshmi, Production of extracellular α-amylase by Streptomyces albidoflavus. Asian J. Biochem. 3, 194-197 DOI: https://doi.org/10.3923/ajb.2008.194.197

Ozdemir, S., A. Fincan, A. Karakaya and B. Enez, (2018). A novel raw starch hydrolyzing thermostable α-amylase produced by newly isolated Bacillus mojavensis SO-10: Purification, characterization and usage in starch industries. Braz. Archives of Biol. & Technol. 61,1-16 DOI: https://doi.org/10.1590/1678-4324-2018160399

Prakash, O., N. Jaiswal and R. Pandey, (2011) Effect of metal ions, EDTA and sulfhydryl reagents on soybean amylase activity. Asian J. Biochem. 6(3), 282-290 DOI: https://doi.org/10.3923/ajb.2011.282.290

Purwanto, M.G, (2016). The role and efficiency of ammonium sulphate precipitation in purification process of papain crude extract. Procedia Chem. 18, 127-131 DOI: https://doi.org/10.1016/j.proche.2016.01.020

Rathour,R., J. Gupta, B. Tyagi and S. (2020). Thakur, Production and characterization of psychrophilic α-amylase from a psychrophilic bacterium, Shewanella sp. ISTPL2.Amylase 4, 1-10 DOI: https://doi.org/10.1515/amylase-2020-0001

Sajedi, R., A. Naderi-Manesh, K. Khosro, K. Ahmad, G. Ranjbar, A. Asoodeh, F. Moradian, (2005). A Ca-independent α-amylase that is active and stable at low pH from the Bacillus sp. KR-8104, Enzyme & Microb. Technol. 36(5–6), 666-671 DOI: https://doi.org/10.1016/j.enzmictec.2004.11.003

Sakač, N. and M. Sak-Bosnar, (2012). Potentiometric study of α-amylase kinetics using a platinumredox sensor. Int. J. Electrochem. Sci. 7, 3008 – 3017 DOI: https://doi.org/10.1016/S1452-3981(23)13931-9

Singh, R., V. Kapoor, V. Kumar, Utilization of agro-industrial wastes for the simultaneous production of amylase and xylanase by thermophilic actinomycetes. Braz. J. Microbiol. 43(4) 1545-1552 (2012). DOI: https://doi.org/10.1590/S1517-83822012000400039

Snehi, S., V. Nigam and R. Sharma, (2021). Enhanced production and biochemical characterization of a thermostable amylase from thermophilic bacterium Geobacillus icigianus BITSNS038. J. Taibah Uni. for Sci. 15(1),730–745 DOI: https://doi.org/10.1080/16583655.2021.2002549

Tallapragada, P., R. Dikshit, A. Jadhav and U. Sarah, (2017). Partial purification and characterization of amylase enzyme under solid state fermentation from Monascus anguineus. J. Genetic Eng. Biotechno. 15(1), 95-101 DOI: https://doi.org/10.1016/j.jgeb.2017.02.003

Tatah, V. and O. Otitoju, (2015). Characterization of immobilized post-carbohydrate meal salivary α-amylase. Afr. J. of Biotechnol.14(31), 2472-2477 DOI: https://doi.org/10.5897/AJB2015.14510

Zohra, R., S. Qader, S. Pervez and A. Aman, (2016). Influence of different metals on the activation and inhibition of α-amylase from thermophilic Bacillus firmus KIBGE-IB28. Pak. J. Pharm. Sci. 29(4), 1275-1278

Published

2024-04-14

How to Cite

Nwachukwu, U. F., George-Okafor, U. O., Mba-Omeje , K. N., Ezeme-Nwafor, A. C., Onah, I. A., & Egbuji, I. J. V. (2024). PURIFICATION AND CHARACTERIZATION OF AMYLASE PRODUCED FROM PROBIOTIC LACTOBACILLUS PLANTARUM CS FOR INDUSTRIAL APPLICATIONS. Pakistan Journal of Biotechnology, 21(2), Accepted . https://doi.org/10.34016/pjbt.2024.21.02.890