GENETIC ANALYSIS IN VARIOUS GENOTYPES OF BREAD WHEAT UNDER NORMAL AND HEAT-STRESS ENVIRONMENTS
DOI:
https://doi.org/10.34016/pjbt.2023.20.02.817Keywords:
Heat stress, wheat, morphological character, stomatal conductance, grain yield plant-1Abstract
Abiotic stresses have brought the crops to a destructive position towards yield production of crops, especially wheat. The present study was investigated to compare the relationship between normal and heat stress conditions under two different sowing dates viz. normal and late sowing dates (25th Nov and 25th Dec). The correlation coefficients varied with both sowing dates (normal and late planting). In normal planting number of grains showed a significant positive correlation with grain weight spike-1 (r = 0.618**), grain yield plant-1 (r = 0.591**), seed index (r =0 .456**), biological yield plant-1 (r = 0.540**) and harvest index (r =0 .667**). Grains spike-1 contributed significant positive correlation with grains spike-1 (r=0.094**), grain yield plant-1 (r=0.844**), biological yield plant-1 (r=0.936**), harvest index (r=0.556**), leaf area (r=0.791**), relative water content (r=0.763**), chlorophyll content (r=0.853**), cell membrane stability (r=0.828**) and stomatal conductance (r=0.292**). Grain yield plant-1 exhibited a significant positive correlation under normal planting with the number of tillers plant-1, number of spikelets spike-1, grains spike-1, and grain weight spike-1 (r=0.695**,0.207*,0.591**and 0.950**), respectively. Whereas, late planting declared grains spike-1 revelaed signficant positive correlation with grains spike-1 (r=0.094**), grain yield plant-1 (r=0.844**), biological yield plant-1 (r=0.936**), harvest index (r=0.556**), leaf area (r=0.791**),relative water content (r=0.763**), chlorophyll content (r=0.853**), cell membrane stability (r=0.828**) and stolatal conductance (r=0.292**). Under late planting, Yield showed a significant positive correlation with spike length, grains spike-1, and grain weight spike-1 (r=0.343**,0.844**, and 0.964**), respectively
Metrics
References
Ahmad, M., Waraich, E. A., Zulfiqar, U., Ullah, A., & Farooq, M. (2022). Thiourea application increases seed and oil yields in Camelina under heat stress by modulating the plant water relations and antioxidant defense system. Journal of Plant Nutrition, 12(1),1-18. DOI: https://doi.org/10.1007/s42729-021-00735-2
Baye A, Berihun B, Bantayehu M, & Derebe B. (2020). Genotypic and phenotypic correlation and path coefficient analysis for yield and yield-related traits in advanced bread wheat (Triticum aestivum L.) lines. Cogent Food & Agriculture. 6(1):1752-2603. DOI: https://doi.org/10.1080/23311932.2020.1752603
Bhanu, A.N., Arun B, & Mishra V.K. (2018). Genetic variability, heritability and correlation study of physiological and yield traits in relation to heat tolerance in wheat (Triticum aestivum L.). Biomedical Journal of Scientific & Technical Research. 2(1),21-26. DOI: https://doi.org/10.26717/BJSTR.2017.01.000636
Blum, A., Klueva, N., & Nguyen, H. T. (2017). Wheat cellular thermotolerance is related to yield under heat stress. Journal Scientific of Euphytica, 117(2), 117-123. DOI: https://doi.org/10.1023/A:1004083305905
Farooq, M., Bramley, H., Palta, J. A., & Siddique, K. H. (2011). Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences, 30(6),491-507. DOI: https://doi.org/10.1080/07352689.2011.615687
Getachew A, Worede F, & Alamerew S. Phenotypic variation and traits interrelationships in bread wheat (Triticum aestivum L.) genotypes in Northern Ethiopia. (2021). Acta Agriculturae Slovenica. 117(3),1-9 DOI: https://doi.org/10.14720/aas.2021.117.3.1291
Goufo, P., Moutinho-Pereira, J. M., Jorge, T. F., Correia, C. M., Oliveira, M. R. & Rosa, E. (2017). Cowpea (Vigna unguiculata L. Walp.) metabolomics: osmoprotection as aphysiological strategy for drought stress resistance and improved yield. Frontier Plant Sciences, 8(1), 586-589. DOI: https://doi.org/10.3389/fpls.2017.00586
Giorno, F., M. Wolters-Arts, Mariani C. and Rieu I. (2019). Ensuring reproduction at high temperatures: the heat stress response during anther and pollen development. Plants 2(1), 489–506. DOI: https://doi.org/10.3390/plants2030489
Hasanuzzaman, M., Nahar K. and Fujita M. (2013). Extreme Temperatures, Oxidative Stress and Antioxidant Defense in Plants. In Abiotic Stress—Plant Responses and Applications in Agriculture, Science., 2(1),169–205. DOI: https://doi.org/10.5772/54833
Khan, S.U., Din J.U, Qayyum A., Jan N.E. and Jenks M.A. (2021). Heat tolerance indicators in Pakistani wheat (Triticum aestivum L.) genotype. Journal Agriculture Research., 74(1), 109-121. DOI: https://doi.org/10.1515/botcro-2015-0002
Kumar P, Solanki YP, & Singh V. (2020). Genetic Variability and Association of Morphophysiological Traits in Bread Wheat (Triticum aestivum L.). Current Journal of Applied Science and Technology. 39(35),95-105. DOI: https://doi.org/10.9734/cjast/2020/v39i3531059
Long, X. X., Ju, H., Wang, J. D., Gong, S. H., & Li, G. Y. (2022). Impact of climate change on wheat yield and quality in the Yellow River Basin under RCP8. 5 during. Advances in Climate Change Research, 13(1),23-28. DOI: https://doi.org/10.1016/j.accre.2022.02.006
Maheswari, M., S.K. Yadav., A.K. Shanker, M.A. Kumar and B. Venkateswarlu, (2012). Overview of plant stresses: Mechanisms, adaptations, and research pursuit. In crop stress and its management: Perspectives and Strategies; Venkateswarlu, B., Shanker, A.K., Shanker, C., Maheswari, M., Eds.; Springer: Dordrecht, The Netherlands, Journal, Science., 13(1)1-18. DOI: https://doi.org/10.1007/978-94-007-2220-0_1
Mirosavljević, M., Mikić, S., Župunski, V., Kondić Špika, A., Trkulja, D., Ottosen, C. O & Abdelhakim, L. (2021). Effects of high temperature during anthesis and grain filling on physiological characteristics of winter wheat cultivars. Journal of Agronomy and Crop Science, 207(5), 823-832. DOI: https://doi.org/10.1111/jac.12546
Pandiyan, M., Sivaji, M., Yuvaraj, M., Krishnaveni, A., Sivakumar, C., and Jamuna, E. (2023). Molecular and physiological approaches for effective management of drought in Black Gram. In Legumes: Physiology and Molecular Biology of Abiotic Stress Tolerance, 23(1), 259-278 DOI: https://doi.org/10.1007/978-981-19-5817-5_10
Rajput RS. (2019). Path analysis and genetic parameters for grain yield in bread wheat (Triticum aestivum L.). Annual Research & Review in Biology. 28(1),1-8. DOI: https://doi.org/10.9734/arrb/2019/v31i330050
Robinson, J. (1949). Mr. Harrod's dynamics. The Economic Journal, 59(233), 68-85. DOI: https://doi.org/10.2307/2225846
Sato, S. Kamiyama, M., Iwata, T., Makita, N., Furukawa and Ikeda H. (2006). Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Annals of Biotehnology, 97(1),731–738. DOI: https://doi.org/10.1093/aob/mcl037
Snedecor, G. W., & Cochran, W. G. (1980). Statistical methods., 7th edn (Iowa State University Press: Ames, IA).
Upadhyay K, Adhikari NR, & Sharma S. (2019). Genetic variability and cluster analysis of wheat (Triticum aestivum L.) genotypes in foot hill of Nepal. Archives of Agriculture and Environmental Science. 4(3), 350-358. DOI: https://doi.org/10.26832/24566632.2019.0403013
Ul-Allah S, Azeem A, Sher A, Ijaz M, Sattar A, Saleem MA, Bibi M, Abbas N, & Hussain M. (2021). Assessment of genetic variability and direct-indirect contribution of post-anthesis traits to the grain yield in bread wheat (Triticum aestivum L.) at different sowing dates. International Journal of Agriculture Biology, 26(1), 193-200. DOI: https://doi.org/10.17957/IJAB/15.1824
Verma P, Saini P, Singh V, & Yashveer S. (2019). Genetic variability of wheat (Triticum aestivum L.) genotypes for agro-morphological traits and their correlation and path analysis. Journal of Pharmacognosy and Phytochemistry. 8(4),22-29.
Wang, X., Cai, J., Jiang, D., Liu, F., Dai, T., and Cao, W. (2011). Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by postanthesis heat stress in wheat. Journal Plant Physiology. 168(1), 585–593. DOI: https://doi.org/10.1016/j.jplph.2010.09.016
Xu, J., Lowe, C., Hernandez-Leon, S. G., Dreisigacker, S., Reynolds, M. P., Valenzuela-Soto, E. M., & Heuer, S. (2022). The effects of brief heat during early booting on reproductive, developmental, and physiological performance in common wheat (Triticum aestivum L.). Biology Research., 3(1),35-42. DOI: https://doi.org/10.1101/2022.02.20.481180
Yang, T., Yao, S., Hao, L., Zhao, Y., Lu, W., & Xiao, K. (2016). Wheat bHLH-type transcription factor gene TabHLH1 is crucial in mediating osmotic stresses tolerance through modulating largely the ABA-associated pathway. Plant Cell Reports, 35(11), 2309-2323. DOI: https://doi.org/10.1007/s00299-016-2036-5
Yared S, Hussein S, Mark L, & Isack M. (2021). Genetic variability and association of yield and yield components among bread wheat genotypes under drought stressed condition. AJCS. 15(06), 863-870. DOI: https://doi.org/10.21475/ajcs.21.15.06.p2987
Zhang, R., Liu, G., Xu, H., Lou, H., Zhai, S., Chen, A. and Li, B. (2022). Heat stress tolerance confers basal heat stress tolerance in allohexaploid wheat (Triticum aestivum L.). Journal of Experimental Botany. 5(3), 1545-1343 DOI: https://doi.org/10.1093/jxb/erac297
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Raza Ali Rind, Shabana Memon, Wajid Ali Jatoi, Aijaz Ahmed Soomro
This work is licensed under a Creative Commons Attribution 4.0 International License.