DETERMINATION OF ANTIBIOTIC RESISTANCE OF SALMONELLA SPP. ISOLATED FROM ICE CREAM
DOI:
https://doi.org/10.34016/pjbt.2023.20.01.783Keywords:
SS agar, salmonella and Shigella agar, MDR: , multi drug resistanceAbstract
The current study sought to determine the extent of antibiotic resistance and prevalence among Salmonella spp. The Salmonella spp. Antibiotic resistance threat and bacteriological safety of food goods like ice cream present therapeutic management problems within the public health system. Salmonella bacteria are Gram-negative, facultative anaerobic, flagellated bacilli containing antigens like V, Hi, and O. Nearly 1800 serovars have been found. Each of them is categorized as a different species under the current classification system. To obtain the concentration of food borne pathogens, Ice cream was gathered from various locations and put on SS and MacConkey agar to test for the presence of Salmonella spp. in ice cream. Azithromycin, gentamycin, cefotaxime, and ciprofloxacin were among the many classes of antibiotics present in the SS agar on which it was also dispersed. To lessen the burden of Salmonella spp. prevalence in milk, the study advises farmers and raw milk vendors to adopt substantial interventions in animal husbandry and milk marketing, respectively. Additionally, the enforcement and animal health divisions’ active involvement in ensuring prudent antibiotic usage at the farm level may aid in limiting Salmonella spp. antimicrobial resistance. Antibiotic resistance might be reduced by concentrating on alternative remedies for treatment of GIT infections including the use of probiotics, organic approaches, and preventing the horizontal gene transfer of resistant genes.
Metrics
References
Abd El-Ghany W. A. Salmonellosis: A food borne zoonotic and public health disease in Egypt. Journal of Infection in Developing Countries, 14(7), 674-678. (2020) DOI: https://doi.org/10.3855/jidc.12739
Abudabos, A. M., Aljumaah, M. R., Alkhulaifi, M. M., Alabdullatif, A., Suliman, G. M. and Sulaiman, A. R. A. Comparative effects of Bacillus subtilis and Bacillus licheniformis on live performance, blood metabolites and intestinal features in broiler inoculated with Salmonella infection during the finisher phase. Microbial Pathogenesis, 139, 103870. (2020) DOI: https://doi.org/10.1016/j.micpath.2019.103870
Ahmed, A. M., Shimamoto, T. and Shimamoto, T. Characterization of integrons and resistance genes in multidrug-resistant Salmonella enterica isolated from meat and dairy products in Egypt. International Journal of Food Microbiology, 18(9), 39-44. (2014) DOI: https://doi.org/10.1016/j.ijfoodmicro.2014.07.031
Akil, L., Ahmad, H. A., and Reddy, R. S. Effects of climate change on Salmonella infections. Foodborne Pathogens and Disease, 11(12), 974-980. (2014) DOI: https://doi.org/10.1089/fpd.2014.1802
Alphons J.A.M. van Asten, Jaap E. van Dijk. Distribution of classic virulence factors among Salmonella spp., FEMS Immunology and Medical Microbiology, 44(1), 251–259. (2014) DOI: https://doi.org/10.1016/j.femsim.2005.02.002
Chen, H. M., Wang, Y., Su, L. H. and Chiu, C. H. Nontyphoid Salmonella infection: microbiology, clinical features, and antimicrobial therapy. Pediatrics and Neonatology, 54(3), 147-152. (2021) DOI: https://doi.org/10.1016/j.pedneo.2013.01.010
Chong, A., Lee, S., Yang, Y. A. and Song, J. The Role of Typhoid Toxin in Salmonella typhi Virulence. The Yale Journal of Biology and Medicine, 90(2), 283-90. (2017).
Dróżdż, M., Małaszczuk, M., Paluch, E., and Pawlak, A. Zoonotic potential and prevalence of Salmonella serovars isolated from pets. Infection Ecology and Epidemiology, 11(1), 1975530. 2021. DOI: https://doi.org/10.1080/20008686.2021.1975530
Eng, S. K., Pusparajah, P., Ab Mutalib, N. S., Ser, H. L., Chan, K. G. and Lee, L. H. Salmonella: a review on pathogenesis, epidemiology and antibiotic resistance. Frontiers in Life Science, 8(3), 284 - 293. (2015) DOI: https://doi.org/10.1080/21553769.2015.1051243
Hall, R. M. Salmonella genomic islands and antibiotic resistance in Salmonella enterica. Future Microbiology, 5(10), 1525-1538. (2010). DOI: https://doi.org/10.2217/fmb.10.122
Hensel, M. 2000. Salmonella pathogenicity island 2. Molecular Microbiology, 36(5): 1015-1023. (2000). DOI: https://doi.org/10.1046/j.1365-2958.2000.01935.x
Jacobson, A., Lam, L., Rajendram, M., Tamburini, F., Honeycutt, J., Pham, T. and Monack, D. A gut commensal-produced metabolite mediates colonization resistance to Salmonella infection. Cell host and Microbe, 24(2), 296-307. (2018). DOI: https://doi.org/10.1016/j.chom.2018.07.002
Kumar, A. and Kumar, A. Antibiotic resistome of Salmonella typhi: molecular determinants for the emergence of drug resistance. Frontiers of Medicine, 15(5): 693-703. (2021). DOI: https://doi.org/10.1007/s11684-020-0777-6
Lake I. R. Food-borne disease and climate change in the United Kingdom. Environmental health: A Global Access Science Source, 16(1): 117. (2017). DOI: https://doi.org/10.1186/s12940-017-0327-0
Leng, L., Xu, X., Wei, L., Fan, L., Huang, H., Li, J., and Zhou, W. Biochar stability assessment by incubation and modelling: Methods, drawbacks and recommendations. Science of the Environment, 664, 11 - 23. (2019). DOI: https://doi.org/10.1016/j.scitotenv.2019.01.298
Li, W., Pires, S. M., Liu, Z., Ma, X., Liang, J., Jiang, Y. and Guo, Y. Surveillance of foodborne disease outbreaks in China, 2003–2017. Food Control, 118, 107359. (2020). DOI: https://doi.org/10.1016/j.foodcont.2020.107359
Liu, J., Hu, D., Chen, Y., Huang, H., Zhang, H., Zhao, J.and Chen, W. Strain-specific properties of Lactobacillus plantarum for prevention of Salmonella infection. Food and function, 9(7), 3673–3682. (2018). DOI: https://doi.org/10.1039/C8FO00365C
Meteab, B. K. and Abed, A. A. A. Isolation and identification of Salmonella serotypes in poultry. Al-Qadisiyah Journal of Veterinary Medicine Sciences, 17(1): 75 - 80. (2018). DOI: https://doi.org/10.29079/vol17iss1art480
Nair, S., Patel, V., Hickey, T., Maguire, C., Greig, D. R., Lee, W., Godbole, G., Grant, K. and Chattaway, M. A. Real-Time PCR assay for differentiation of typhoidal and Nontyphoidal Salmonella. Journal of Clinical Microbiology, 57(8): 167 - 219. (2019) DOI: https://doi.org/10.1128/JCM.00167-19
Popa, G. L. and Papa, M. I. Salmonella spp. infection-A continuous threat worldwide. Germs, 11(1), 88. (2021) DOI: https://doi.org/10.18683/germs.2021.1244
Pradhan, D. and Devi Negi V. Stress-induced adaptations in Salmonella: A ground for shaping its pathogenesis. Microbiological Research, 22(9): 126 - 311. (2019) DOI: https://doi.org/10.1016/j.micres.2019.126311
Qamar, A., Ismail, T. and Akhtar, S. Prevalence and antibiotic resistance of Salmonella spp. in South Punjab Pakistan. PloS One, 15(11): 18 – 22. (2020) DOI: https://doi.org/10.1371/journal.pone.0232382
Riaz, S. Study of protein biomarkers of diabetes mellitus type 2 and therapy with vitamin B1. Journal of Diabetes Research, (2015). DOI: https://doi.org/10.1155/2015/150176
Riaz, S., Alam, S. S. and Akhtar, M. W. Proteomic identification of human serum biomarkers in diabetes mellitus type 2. Journal of Pharmaceutical and Biomedical Analysis, 51(5), 1103 - 1107. (2010). DOI: https://doi.org/10.1016/j.jpba.2009.11.016
Salman H. A., Abdulmohsen, A. M., Falih, M. N. and Romi, Z. M. Detection of multidrug-resistant Salmonella enterica subsp. enterica serovar Typhi isolated from Iraqi subjects. Veterinary World, 14(7), 19 - 22. (2021). DOI: https://doi.org/10.14202/vetworld.2021.1922-1928
Sastry, A. S. and Bhat, S. Essentials of Medical Microbiology. JP Medical Ltd 2018.
Shahzad, A., Saeed, H., Iqtedar, M., Hussain, S. Z., Kaleem, A., Abdullah, R. and Chaudhary, A. Size-controlled production of silver nanoparticles by Aspergillus fumigatus BTCB10: likely antibacterial and cytotoxic effects. Journal of Nanomaterials, (2019). DOI: https://doi.org/10.1155/2019/5168698
Siddique, A., Azim, S., Ali, A., Andleeb, S., Ahsan, A., Imran, M. and Rahman, A. Antimicrobial resistance profiling of biofilm forming non typhoidal Salmonellaenterica isolates from poultry and its associated food products from Pakistan. Antibiotics, 10(7), 73 - 85. (2021). DOI: https://doi.org/10.3390/antibiotics10070785
Solangi, M., Kanwal, Khan, K. M., Chigurupati, S., Saleem, F., Qureshi, U., & Bhatia, S. Isatin thiazoles as antidiabetic: Synthesis, in vitro enzyme inhibitory activities, kinetics, and in silico studies. Archiv der Pharmazie, 355(6), 2100481. (2022). DOI: https://doi.org/10.1002/ardp.202100481
Song, J., Gao, X. and Galán, J. E. Structure and function of the Salmonella typhi chimaeric A (2) B (5) typhoid toxin. Nature, 499(7458), 350 –354. (2013). DOI: https://doi.org/10.1038/nature12377
Sun, H., Wan, Y., Du, P., and Bai, L. The epidemiology of monophasic Salmonella Typhimurium. Foodborne Pathogens and Disease, 17(2), 87 - 97. (2022). DOI: https://doi.org/10.1089/fpd.2019.2676
Teklemariam, A. D., Al-Hindi, R. R., Albiheyri, R. S., Alharbi, M. G., Alghamdi, M. A., Filimban, A. A., and Bhunia, A. K. Human Salmonellosis: A Continuous Global Threat in the Farm-to-Fork Food Safety Continuum. Foods, 12(9), 1756. (2023). DOI: https://doi.org/10.3390/foods12091756
Vadlamudi Gowthami, S. S. G., Kumar, A. V., and Krishnaiah, N. Assessment of microbial load in raw chicken at retail outlets in and around Hyderabad, India. (2022)
White, A. E., Tillman, A. R., Hedberg, C., Bruce, B. B., Batz, M., Seys, S. A. and Walter, E. S. Foodborne Illness Outbreaks Reported to National Surveillance, United States, 2009–2018. Emerging Infectious Diseases, 28(6), 11 - 17. (2022). DOI: https://doi.org/10.3201/eid2806.211555
Yang, B., Zhao, H., Cui, S., Wang, Y., Xia, X., Wang, X., Meng, J., and Ge, W. Prevalence and characterization of Salmonella enterica in dried milk-related infant foods in Shaanxi, China. Journal of Dairy Science, 97(11), 6754 – 6760. (2014) DOI: https://doi.org/10.3168/jds.2014-8292
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Maimoona Noor, Samreen Riaz, Faiza Saleem
This work is licensed under a Creative Commons Attribution 4.0 International License.