USE OF PLANT GROWTH PROMOTING RHIZOBACTERIA CONTAINING ACC- DEAMINASE ACTIVITY FOR IMPROVING GROUNDNUT YIELD IN RAINFED AREA

Authors

  • Safia Naureen Malik Soil and Water Conservation Research Institute Chakwal, Pakistan,
  • Riffat Bibi Soil and Water Conservation Research Institute Chakwal, Pakistan,
  • Majid Rahim Soil and Water Conservation Research Institute Chakwal, Pakistan,
  • Obaid ur Rehman Soil and Water Conservation Research Institute Chakwal, Pakistan,
  • Sarfraz Ahmed Soil and Water Conservation Research Institute Chakwal, Pakistan,
  • Muhammad Yunas
  • Ghulam Muhammad Soil and Water Conservation Research Institute Chakwal, Pakistan,
  • Azhar Mahmood Aulakh Soil and Water Conservation Research Institute Chakwal, Pakistan,

DOI:

https://doi.org/10.34016/pjbt.2023.20.02.867

Keywords:

Groundnut, rainfed, PGPR, ACC- deaminase

Abstract

Groundnut (Arachis hypogea) is amongst the most valuable leguminous cash crops grown in rainfed areas. The role of plant growth promoting rhizobacteria (PGPR) containing ACC-deaminase is considered vital promoting plant roots under moisture deficit conditions. Under these circumstances a research experiment was conducted at the farm area of Soil and Water Conservation Research Institute, Chakwal in association with PMAS Arid Agriculture University Rawalpindi for 3 years consecutively during 2015-2017. The main objective of the experiment was to exploit and evaluate the impact of PGPR deaminase activity on yield of groundnut crop. The four treatments included farmer practice (no compost & inoculums), with inoculums, with compost and compost + inoculums in 4 replications under RCBD. The improvement recorded in the pod yield of groundnut was 12 %, in the number of pods plant-1 by 20 % and the shelling percentage by 2 % by application of the treatment inoculum + compost. Conclusively, it was ascertained that PGPR containing ACC-deaminase application is an effective approach to enhance groundnut crop production and soil characteristics of degraded soils under rainfed scenario.

Metrics

Metrics Loading ...

References

Glick, B. R., Karaturovíc, D. M., & Newell, P. C. A novel procedure for rapid isolation of plant growth promoting pseudomonads. Canadian journal of microbiology, 41(6), 533-536. (1995). DOI: https://doi.org/10.1139/m95-070

Glick, B. R., Penrose, D. M., & Li, J. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. Journal of theoretical biology, 190(1), 63-68. (1998). DOI: https://doi.org/10.1006/jtbi.1997.0532

Glick, B. R. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological research, 169(1), 30-39.(2014).

Kloepper, J. W., Schroth, M. N. and Miller, T. D. (1980). Effects of rhizosphere colonization by plant growth-promoting rhizobacteria Glick, B. R. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological research, 169(1), 30-39(2014). DOI: https://doi.org/10.1016/j.micres.2013.09.009

Levine, M. Differentiation of B. coli and B. aerogenes on a simplified eosin-methylene blue agar. The Journal of Infectious Diseases, 43-47. (1918). DOI: https://doi.org/10.1086/infdis/23.1.43

Compant, S., Clément, C., & Sessitsch, A. Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, 42(5), 669-678. (2010). DOI: https://doi.org/10.1016/j.soilbio.2009.11.024

Ahemad, M. Implications of bacterial resistance against heavy metals in bioremediation: a review. Journal of Institute of Integrative Omics and Applied Biotechnology(IIOAB), 3(3). (2012).

Ahemad, M., & Khan, M. S. Phosphate-solubilizing and plant-growth-promoting Pseudomonas aeruginosa PS1 improves greengram performance in quizalafop-p-ethyl and clodinafop amended soil. Archives of environmental contamination and toxicology, 58, 361-372. (2010). DOI: https://doi.org/10.1007/s00244-009-9382-z

Rajkumar, M., Ae, N., Prasad, M. N. V., & Freitas, H. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends in biotechnology, 28(3), 142-149. (2010). DOI: https://doi.org/10.1016/j.tibtech.2009.12.002

Bar-ness, E., Chen, Y., Hadar, Y., Marschner, H. and Römheld, V. Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. Plant and Soil. 130(1-2): 231-241. (1992) DOI: https://doi.org/10.1007/BF00011878

Keremer, R. J. and Souissi, T. Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Curr. Microbiol. 43(3): 182-186. (2001.) DOI: https://doi.org/10.1007/s002840010284

Ajit, N. S., Verma, R., & Shanmugam, V. Extracellular chitinases of fluorescent pseudomonads antifungal to Fusarium oxysporum f. sp. dianthi causing carnation wilt. Current Microbiology, 52, 310-316. (2006). DOI: https://doi.org/10.1007/s00284-005-4589-3

Moreira, H., Marques, A. P., Franco, A. R., Rangel, A. O., & Castro, P. M. Phytomanagement of Cd-contaminated soils using maize (Zea mays L.) assisted by plant growth-promoting rhizobacteria. Environmental Science and Pollution Research, 21, 9742-9753. (2014). DOI: https://doi.org/10.1007/s11356-014-2848-1

Ali, S., Charles, T. C., & Glick, B. R. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiology and Biochemistry, 80, 160-167. (2014). DOI: https://doi.org/10.1016/j.plaphy.2014.04.003

Madhaiyan, M., Poonguzhali, S., Ryu, J., & Sa, T. Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta, 224, 268-278. . (2006). DOI: https://doi.org/10.1007/s00425-005-0211-y

Guo, H., & Ecker, J. R. The ethylene signaling pathway: new insights. Current opinion in plant biology, 7(1), 40-49. (2004). DOI: https://doi.org/10.1016/j.pbi.2003.11.011

Abeles FB, Morgan PW, Saltveit ME. Ethylene in plant biology. New York: Academic Press. Academic Press, Inc., New York and London, pp. 414. (1992.)

Chen, L. I. N., Dodd, I. C., Davies, W. J., & Wilkinson, S. Ethylene limits abscisic acid‐or soil drying‐induced stomatal closure in aged wheat leaves. Plant, cell & environment, 36(10), 1850-1859. (2013). DOI: https://doi.org/10.1111/pce.12094

Davies, P. J. The plant hormones: their nature, occurrence, and functions. In Plant hormones: biosynthesis, signal transduction, action! (pp. 1-15). Dordrecht: Springer Netherlands. (2010). DOI: https://doi.org/10.1007/978-1-4020-2686-7_1

Pierik, R., Tholen, D., Poorter, H., Visser, E. J., & Voesenek, L. A. The Janus face of ethylene: growth inhibition and stimulation. Trends in plant science, 11(4), 176-183. (2006). DOI: https://doi.org/10.1016/j.tplants.2006.02.006

Flexas, J., Niinemets, Ü., Gallé, A., Barbour, M. M., Centritto, M., Diaz-Espejo, A., ... & Medrano, H. Diffusional conductances to CO 2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynthesis research, 117, 45-59. (2013). DOI: https://doi.org/10.1007/s11120-013-9844-z

Pal, K. K., Dey, R., Bhatt, D. M., & Chauhan, S. M. Plant growth promoting fluorescent pseudomonads enhanced peanut growth, yield and nutrient uptake. In Proceedings of the Fifth International PGPR Workshop (Vol. 29). (2000, October).

Jacoud, C., Job, D., Wadoux, P., & Bally, R. Initiation of root growth stimulation by Azospirillum lipoferum CRT1 during maize seed germination. Canadian Journal of Microbiology, 45(4), 339-342. (1999).

Vasudevan, Preeti, M. S. Reddy, S. Kavitha, P. Velusamy, R. S. Paulraj, S. M. Purushothaman, V. Brindha Priyadarisini, S. Bharathkumar, J. W. Kloepper, and S. S. Gnanamanickam. "Role of biological preparations in enhancement of rice seedling growth and grain yield." Current Science 83, no. 91:140-1143. (2002):

Badawi, F. S. F., Biomy, A. M. M., & Desoky, A. H. Peanut plant growth and yield as influenced by co-inoculation with Bradyrhizobium and some rhizo-microorganisms under sandy loam soil conditions. Annals of Agricultural Sciences, 56(1), 17-25. (2011).

Tabatabai, M. A. (1996). Soil organic matter testing: An overview. Soil organic matter: analysis and interpretation, 46, 1-9. DOI: https://doi.org/10.2136/sssaspecpub46.c1

Rhoades, J. D. Cation exchange capacity. Methods of soil analysis: Part 2 chemical and microbiological properties, 9, 149-157. (1983). DOI: https://doi.org/10.2134/agronmonogr9.2.2ed.c8

Watanabe, F. S., & Olsen, S. R. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Science Society of America Journal, 29(6), 677-678. (1965). DOI: https://doi.org/10.2136/sssaj1965.03615995002900060025x

Gee, G. W., & Bauder, J. W. Particle‐size analysis. Methods of soil analysis: Part 1 Physical and mineralogical methods, 5, 383-411. (1986). DOI: https://doi.org/10.2136/sssabookser5.1.2ed.c15

McLean, E. O. Soil pH and lime requirement. Methods of soil analysis: Part 2 Chemical and microbiological properties, 9, 199-224. (1983). DOI: https://doi.org/10.2134/agronmonogr9.2.2ed.c12

Ghorbanpour, M., Hatami, M., & Khavazi, K. Role of plant growth promoting rhizobacteria on antioxidant enzyme activities and tropane alkaloid production of Hyoscyamus niger under water deficit stress. Turkish Journal of Biology, 37(3), 350-360. (2013). DOI: https://doi.org/10.3906/biy-1209-12

Barazani, O. Z., & Friedman, J. Is IAA the major root growth factor secreted from plant-growth-mediating bacteria?. Journal of Chemical Ecology, 25, 2397-2406. (1999). DOI: https://doi.org/10.1023/A:1020890311499

Erturk, Y., Ercisli, S., Haznedar, A., & Cakmakci, R. Effects of plant growth promoting rhizobacteria (PGPR) on rooting and root growth of kiwifruit (Actinidia deliciosa) stem cuttings. Biological Research, 43(1), 91-98. (2010). DOI: https://doi.org/10.4067/S0716-97602010000100011

Gamalero, E., Trotta, A., Massa, N., Copetta, A., Martinotti, M. G., & Berta, G. Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza, 14, 185-192. (2004). DOI: https://doi.org/10.1007/s00572-003-0256-3

Khodary, S. E. A. Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. Int. J. Agric. Biol, 6(1), 5-8. (2004).

Zhu, X. F., Wang, B., Song, W. F., Zheng, S. J., & Shen, R. F. Putrescine alleviates iron deficiency via NO-dependent reutilization of root cell-wall Fe in Arabidopsis. Plant Physiology, 170(1), 558-567. (2016). DOI: https://doi.org/10.1104/pp.15.01617

Gresshoff, P. M. Molecular genetic analysis of nodulation genes in soybean. Plant breeding reviews, 11, 275-318. . (1993). DOI: https://doi.org/10.1002/9780470650035.ch8

Korir, H., Mungai, N. W., Thuita, M., Hamba, Y., & Masso, C. Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Frontiers in plant science, 8, 141. (2017). DOI: https://doi.org/10.3389/fpls.2017.00141

Bai, Y., Zhou, X., & Smith, D. L. Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop science, 43(5), 1774-1781. (2003). DOI: https://doi.org/10.2135/cropsci2003.1774

Vassileva, V., & Ignatov, G. Polyamine-induced changes in symbiotic parameters of the Galega orientalis–Rhizobium galegae nitrogen-fixing system. Plant and soil, 210, 83-91. (1999). DOI: https://doi.org/10.1023/A:1004636800869

Yadegari, M., & Rahmani, H. A. Evaluation of bean(Phaseolus vulgaris) seeds' inoculation with Rhizobium phaseoli and plant growth promoting rhizobacteria(PGPR) on yield and yield components. African Journal of Agricultural Research, 5(9), 792-799. (2010).

Dey, R. K. K. P., Pal, K. K., Bhatt, D. M., & Chauhan, S. M. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiological research, 159(4), 371-394. (2004). DOI: https://doi.org/10.1016/j.micres.2004.08.004

Dasgupta, D., Ghati, A., Sarkar, A., Sengupta, C., & Paul, G. Application of plant growth promoting rhizobacteria (PGPR) isolated from the rhizosphere of Sesbania bispinosa on the growth of chickpea (Cicer arietinum L.). Int J Curr Microbiol App Sci, 4(5), 1033-1042. (2015).

El-Hak, S. G., Ahmed, A. M., & Moustafa, Y. M. M. Effect of foliar application with two antioxidants and humic acid on growth, yield and yield components of peas (Pisum sativum L.). Journal of horticultural science & ornamental plants, 4(3), 318-328. (2012).

Pırlak, L., & Köse, M. Effects of plant growth promoting rhizobacteria on yield and some fruit properties of strawberry. Journal of plant nutrition, 32(7), 1173-1184. (2009). DOI: https://doi.org/10.1080/01904160902943197

Tilak, K. V. B. R., Ranganayaki, N., & Manoharachari, C. Synergistic effects of plant‐growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan). European Journal of Soil Science, 57(1), 67-71. (2006). DOI: https://doi.org/10.1111/j.1365-2389.2006.00771.x

Egamberdieva, D., Berg, G., Lindström, K., & Räsänen, L. A. Co-inoculation of Pseudomonas spp. with Rhizobium improves growth and symbiotic performance of fodder galega (Galega orientalis Lam.). European Journal of Soil Biology, 46(3-4), 269-272. (2010). DOI: https://doi.org/10.1016/j.ejsobi.2010.01.005

Yasmin, F., Othman, R., Sijam, K., & Saad, M. S. Effect of PGPR inoculation on growth and yield of sweet potato. J. Biol. Sci, 7(2), 421-424. (2007). DOI: https://doi.org/10.3923/jbs.2007.421.424

Karlidag, H., Esitken, A., Turan, M., & Sahin, F. Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Scientia Horticulturae, 114(1), 16-20. (2007). DOI: https://doi.org/10.1016/j.scienta.2007.04.013

Jacoud, C., Job, D., Wadoux, P., & Bally, R. Initiation of root growth stimulation by Azospirillum lipoferum CRT1 during maize seed germination. Canadian Journal of Microbiology, 45(4), 339-342. (1999). DOI: https://doi.org/10.1139/w99-023

Vasudevan, P., Reddy, M. S., Kavitha, S., Velusamy, P., Paulraj, R. S., Purushothaman, S. M., ... & Gnanamanickam, S. S. Role of biological preparations in enhancement of rice seedling growth and grain yield. Current Science, 83(9), 1140-1143. (2002).

Badawi, F. S. F., Biomy, A. M. M., & Desoky, A. H. Peanut plant growth and yield as influenced by co-inoculation with Bradyrhizobium and some rhizo-microorganisms under sandy loam soil conditions. Annals of Agricultural Sciences, 56(1), 17-25. (2011). DOI: https://doi.org/10.1016/j.aoas.2011.05.005

Trapero Casas, A., Kaiser, W. J., & Ingram, D. M. Control of Pythium seed rot and preemergence damping-off of chickpea in the US Pacific Northwest and Spain. Plant Disease, 74(8), 563-569. (1990). DOI: https://doi.org/10.1094/PD-74-0563

Rahi, P., Pathania, V., Gulati, A., Singh, B., Bhanwra, R. K., & Tewari, R. Stimulatory effect of phosphate-solubilizing bacteria on plant growth, stevioside and rebaudioside-A contents of Stevia rebaudiana Bertoni. Applied Soil Ecology, 46(2), 222-229. (2010). DOI: https://doi.org/10.1016/j.apsoil.2010.08.008

Qureshi, M.A., A. Iqbal, N. Akhtar, M.A. Shakir and A. Khan.. Co-inoculation of phosphate solubilizing bacteria and rhizobia in the presence of L-tryptophan for the promotion of mash bean (Vigna mungo L.). Soil Environ. 31(1): 47-54.( 2012)

Downloads

Published

2023-12-21

How to Cite

Malik, S. N., Bibi, R., Rahim, M., Rehman, O. ur, Ahmed, S., Yunas, M. ., … Aulakh, A. M. (2023). USE OF PLANT GROWTH PROMOTING RHIZOBACTERIA CONTAINING ACC- DEAMINASE ACTIVITY FOR IMPROVING GROUNDNUT YIELD IN RAINFED AREA. Pakistan Journal of Biotechnology, 20(02), 339–346. https://doi.org/10.34016/pjbt.2023.20.02.867

Issue

Section

Research Articles