RHIZOBACTERIA AS ANTAGONIST AGAINST Fusarium oxysporum CAUSING TOMATO WILT

Authors

  • Noor Muhammad Shah Department of Plant Pathology, Balochistan Agriculture College Quetta, Pakistan
  • Syed Zulfiqar Ali Department of Plant Pathology, Balochistan Agriculture College Quetta, Pakistan
  • Muhammad Waris department of plant pathology, balochistan agriculture college, quetta
  • Atta Ullah Deprtment of Plant Breeding and Genetics, Balochistan Agriculture College Quetta
  • Jabeen Jabeen Department of Plant Pathology, Balochistan Agriculture College Quetta, Pakistan
  • Basheer Ahmed Department of Plant Pathology, Balochistan Agriculture College, Quetta
  • Sana Shazia Jiskani Department of Horticulture, Sindh Agriculture University Tandojam

DOI:

https://doi.org/10.34016/pjbt.2024.21.01.855

Keywords:

Tomato, Fusarium wilt,, Antagonist, Dual culture

Abstract

Tomatoes (Lycopersicon esculentum L.) are the most extensively grown vegetable in the world. It belongs to the Solanaceae family and is commonly planted for its tasty fruits. Pests, weeds, diseases, and parasites are just a few of the numerous variables that significantly affect tomato growth and yield. The most common disease affecting tomatoes is fusarium wilt. Fifteen rhizobacterial strains were identified by morphological and biochemical analyses in this work, and they were employed as an antagonist against Fusarium oxysporum f.sp. lycopersici. Fifteen isolates were investigated for their antagonistic properties against Fusarium oxysporum f.sp. lycopersici using an invitro dual culture approach. The growth of Fusarium oxysporum f.sp. lycopersici was suppressed by each isolate. Out of the 15 rhizobacteria isolates, isolate RBS-5 exhibited the highest level of growth inhibition and strongly suppressed the development of Fusarium oxysporum f.sp. lycopersici, resulting in a 57.28 percent reduction in pathogen growth as compared to the control. The development of Fusarium oxysporum f.sp. lycopersici was suppressed by isolates RBS-12, RBS-6, and RBS-15, in decreasing order of merit, compared to the control by 53.7, 51.91, and 51.73 percent. Isolate RBS-13 showed the least amount of pathogen growth inhibition 20.83 percent. The data was statistically analyzed.

Metrics

Metrics Loading ...

References

Abdel-Monaim, M. F., Ismail, M. E., & Morsy, K. M. (2011). Induction of systemic resistance of benzothiadiazole and humic acid in soybean plants against Fusarium wilt disease. Mycobiology, 39(4), 290-298. DOI: https://doi.org/10.5941/MYCO.2011.39.4.290

Abdesselem, S. M., Nisserine, H. K., Mebrouk, K., Jamal, E. H., & Eduardo, G. (2016). Characterization of Fusarium oxysporum isolates from tomato plants in Algeria. African Journal of Microbiology Research, 10(30), 1156-1163. DOI: https://doi.org/10.5897/AJMR2016.8161

Ahmed, M., (2011). Management of Fusarium wilt of tomato by soil amendment with Trichoderma koningii and a white sterile fungus. Indian J. Res, 5, 35-38.

Ali, Q., Ashfaq, M., & Khan, M. T. I. (2017). An economic analysis of off-season tomato production in Punjab. JAPS: Journal of Animal & Plant Sciences, 27(1); 27.

Bharat, N. K., & Sharma, J. (2014). Occurrence of fusarium wilt of tomato under protected conditions in Himachal Pradesh, India. International Journal of Bio-resource and Stress Management, 5(2), 285-287. DOI: https://doi.org/10.5958/0976-4038.2014.00569.7

Cao, Y., Zhang, Z., Ling, N., Yuan, Y., Zheng, X., Shen, B., & Shen, Q. (2011). Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biology and fertility of soils, 47, 495-506. DOI: https://doi.org/10.1007/s00374-011-0556-2

Cappuccino, J. C., & Sherman, N. (1992). Microbiology: A laboratory manual, New York; pp. 125-179.

Cappuccino, J. G., & Sherman, N. (1983). Microbiology a Laboratory Manual. Advison-Wesley Pub. Comp. Inc. USA.

Chen, Y., Yan, F., Chai, Y., Liu, H., Kolter, R., Losick, R., & Guo, J. H. (2013). Biocontrol of tomato wilt disease by B acillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environmental microbiology, 15(3), 848-864. DOI: https://doi.org/10.1111/j.1462-2920.2012.02860.x

Chohan, T. Z., & Ahmad, S. (2008). An assessment of tomato production practices in Danna Katchely, Azad Jammu Kashmir. Pak J Life Soc Sci, 6, 96-102.

Dennis, C., & Webster, J. (1971). Antagonistic properties of species-groups of Trichoderma: I. Production of non-volatile antibiotics. Transactions of the British Mycological Society, 57(1), 25. DOI: https://doi.org/10.1016/S0007-1536(71)80077-3

Fiddaman, P. J., & Rossall, S. (1993). The production of antifungal volatiles by Bacillus subtilis. Journal of Applied Bacteriology, 74(2), 119-126. DOI: https://doi.org/10.1111/j.1365-2672.1993.tb03004.x

Fletcher, J., Luster, D., Bostock, R., Burans, J., Cardwell, K., Gottwald, T., & Smith, K. (2010). Emerging infectious plant diseases. Emerging Infections 9, 337-366. DOI: https://doi.org/10.1128/9781555816803.ch18

Jones, J. B., Zitter, T. A., Momol, T. M., & Miller, S. A. (2014). Compendium of tomato diseases and pests. APS press.

Joseph, B., Patra, R. R., & Lawrence, R. (2007). Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). International Journal of Plant Production, 1(2), 141-152.

Karimi, K., Amini, J., Harighi, B., & Bahramnejad, B. (2012). Evaluation of biocontrol potential of 'pseudomonas' and 'bacillus' spp. against fusarium wilt of chickpea. Australian Journal of Crop Science, 6(4), 695-703.

Khalimi, K., & Suprapta, D. N. (2011). Induction of plant resistance against Soybean stunt virus using some formulations of Pseudomonas aeruginosa. Journal of ISSAAS (International Society for Southeast Asian Agricultural Sciences), 17(1), 98-105.

Khan, M. S., & Zaidi, A. (2002). Plant growth promoting Rhizobacteria from rhizospheres of wheat and chickpea. Annals of Plant Protection Sciences, 10(2), 265-271.

Kirsop, B. E., & Doyle, A. (1991). Maintenance of microorganisms and cultured cells: a manual of laboratory methods. Academic Press: London.

Kumar, K. S., Paswan, S., & Srivastava, S., (2012). Tomato-a natural medicine and its health benefits. Journal of Pharmacognosy and Phytochemistry, 1(1), 33-43.

Leslie, J.F., Summerell, B. A & Bullock, S., (2006). The Fusarium laboratory manual Ames, IA: Blackwell Publishers; 10 (2), 11-15. DOI: https://doi.org/10.1002/9780470278376

Li, L., Ma, J., Li, Y., Wang, Z., Gao, T., & Wang, Q. (2012). Screening and partial characterization of Bacillus with potential applications in biocontrol of cucumber Fusarium wilt. Crop protection, 35, 29-35. DOI: https://doi.org/10.1016/j.cropro.2011.12.004

Lichtenzveig, J., Anderson, J., Thomas, G., Oliver, R., & Singh, K. (2006). Inoculation and growth with soil borne pathogenic fungi. Medicago truncatula, 1-10.

Monda, E. O. (2002). Biological control of Fusarium wilt of tomato–a review. Journal of Tropical Microbiology and Biotechnology, 1(1), 74-78. DOI: https://doi.org/10.4314/jtmb.v1i1.35414

Moyers, B. T., Morrell, P. L., & McKay, J. K. (2018). Genetic costs of domestication and improvement. Journal of Heredity, 109(2), 103-116. DOI: https://doi.org/10.1093/jhered/esx069

Mukerji, K. G., & Chincholkar, S. B. (2007). Biological control of plant diseases. Food Products Press; (2);27-30.

Ninama, G. L., Mistry, K., Parmar, R., Patel, K., & Vegad, M. M. (2012). Antibiotic resistance pattern in Pseudomonas aeruginosa species isolated at a tertiary care hospital, Ahmadabad. National journal of medical research, 2(02), 156-159.

Pastor, N. A., Reynoso, M. M., Tonelli, M. L., Masciarelli, O., Rosas, S. B., & Rovera, M. (2010). Potential biological control Pseudomonas sp. PCI2 against damping-off of tomato caused by Sclerotium rolfsii. Journal of Plant Pathology, 737-745.

Pritesh, P., & Subramanian, R. B. (2011). PCR based method for testing Fusarium wilt resistance of tomato. African Journal of Basic and Applied Sciences, 3(5), 222.

Rai, G. K., Kumar, R., Singh, A. K., Rai, P. K., Rai, M., Chaturvedi, A. K., & Rai, A. B. (2012). Changes in antioxidant and phytochemical properties of tomato (Lycopersicon esculentum mill.) under ambient condition. Pak. J. Bot, 44(2), 667-670

Rangaswami, G., (1972). Diseases of crop plants in India. Prentice Hall of India Pvt. Ltd., New Delhi; 520 .

Saavedra, T. M., Figueroa, G. A., & Cauih, J. G. D. (2016). Origin and evolution of tomato production Lycopersicon esculentum in México. Ciência Rural, 47, 20160526. DOI: https://doi.org/10.1590/0103-8478cr20160526

Saravanan, S., Muthumanickam, P., Saravanan, T. S., & Santhaguru, K. (2013). Antagonistic potential of fluorescent Pseudomonas and its impact on growth of tomato challenged with phtopathogens. African Crop Science Journal, 21(1), 29-36.

Sarma, M.V., Saharan, R.K., Prakash, K., Bisaria, A. & Sahai, V. (2009). Application of Fluorescent Pseudomonads Inoculant Formulations on Vigna mungo through Field Trial. International Journal of Biological and Life Sciences. 1:41-47.

Shahzaman, S. H. A. Z. I. A. (2016). Development of biopesticide for the control of root pathogenic fungi in chickpea using plant growth promoting rhizobacteria (Doctoral dissertation, Doctoral dissertation, Arid Agriculture University, Rawalpindi, Pakistan.

Sheu, Z. M., & Wang, T. C. (2006). First report of Race 2 of Fusarium oxysporum f. sp. lycopersici, the causal agent of fusarium wilt on tomato in Taiwan. Plant disease, 90(1), 111-111. DOI: https://doi.org/10.1094/PD-90-0111C

Sivamani, E., & Gnanamanickam, S. S. (1988).Biological control of Fusarium oxysporum f. sp. cubense in banana by inoculation with Pseudomonas fluorescens. Plant and soil, 107, 3-9. DOI: https://doi.org/10.1007/BF02371537

Sliva, G. H., Costa, V. P., Campos, V. P., Oliverira, D. F., & Pfenning, L. H. (2001). Fungal metabolites with activity against nematodes. Bioactive Fungal metabolites. Impact and Exploitation. In International Symposium. Br. Mycolog. Soc., Wales Swansea, UK (95).

Vethavalli, S., & Sudha, S. S. (2012). In vitro and in silico studies on biocontrol agent of bacterial strains against Fusarium oxysporum f. sp. lycopersici. Research in Biotechnology, 3(2), 22-31.

Vincent, J. M. (1947). Distortion of fungal hyphae in the presence of certain inhibitors. Nature, 159(4051), 850-850. DOI: https://doi.org/10.1038/159850b0

Vincent, J. M., & Humphrey, B. (1970). Taxonomically significant group antigens in Rhizobium. Microbiology, 63(3), 379-382. DOI: https://doi.org/10.1099/00221287-63-3-379

Wollum, A. I. (1982). Cultural methods for soil microorganisms. Methods of soil analysis,2, 780-802

Worku, M., & Sahe, S. (2018). Review on disease management practice of tomato wilt caused Fusarium oxysporum in case of Ethiopia. J Plant Pathol Microbiol, 9(11), 2. DOI: https://doi.org/10.4172/2157-7471.1000460

Downloads

Published

2024-02-21

How to Cite

Shah, N. M., Ali, S. Z., Waris, M., Ullah, A., Jabeen, J., Ahmed, B., & Jiskani, S. S. (2024). RHIZOBACTERIA AS ANTAGONIST AGAINST Fusarium oxysporum CAUSING TOMATO WILT. Pakistan Journal of Biotechnology, 21(1), 155–164. https://doi.org/10.34016/pjbt.2024.21.01.855

Most read articles by the same author(s)