MINERAL NITROGEN DYNAMICS OVER TIME INFLUENCED BY PEANUT-WASTE BIOCHAR APPLICATION IN ALKALINE SOIL
DOI:
https://doi.org/10.34016/pjbt.2023.20.02.853Abstract
Soil fertility in arid to semi-arid regions is constrained by extreme temperature fluctuations. Soils of such regions typically have low fertility levels, nitrogen (N) availability (due to ammonia volatilization and denitrification), and soil organic carbon (SOC) content. An incubation experiment was conducted to assess how a peanut-waste biochar (PB), produced at 300°C, influences the mineral N and chemical properties of an alkaline soil. The treatments included five PB rates (control, 5, 10, 15, and 20g PB kg−1 soil) and two fertilizer rates [no fertilization without additions of N and phosphorus (P) and fertilization with addition of 120kg N ha−1 and 90kg P ha−1]. The soil was incubated for various durations (0, 14, 28, 42, and 56days). There were significant temporal shifts in the mineral form of N in the incubated soil. Following 56days of incubation under fertilization, the treatment with 20g kg−1 PB revealed soil nitrate-N and ammonium-N levels of 15.8mg kg‒1 and 21.1mg kg‒1, respectively. With no fertilization, 20g kg−1 PB increased mineral N by 2.3-fold over the treatment without PB. This increase was 2.6-fold with fertilization. After 56days of incubation, in the presence of 20g kg−1 PB, there was a 19% increase in cation exchange capacity under fertilization and a 21% increase under no fertilization, compared to the respective treatments without PB. Immediately after the PB application, SOC was significantly increased, corresponding to PB rates. However, substantial increases were observed only in treatments with 15 and 20g PB kg−1 soil. In conclusion, the addition of 15 and 20g PB kg−1 to alkaline soil significantly increased N availability in soil, demonstrating the importance of biochar for N management in agricultural soils.
Metrics
References
Abbas, G., G. Hassan, M.A. Ali, M. Aslam & Z. Abbas, Response of wheat to different doses of ZnSO4 under Thall desert environment. Pak. J. Bot. 42(6), 4079-4085 (2010).
Aon, M., M. Khalid, M.A. Naeem, M. Zafar-ul-Hye, S. Hussain, M. Hussain & Z. Aslam, Peanut-waste biochar and buffalo manure decreased nitrogen and phosphorus requirement of maize grown in an alkaline calcareous soil. Int. J. Agric. Biol. 20, 2661-2668 (2018).
Aon, M., Z. Aslam, S. Hussain, M.A. Bashir, M. Shaaban, S. Masood, S. Iqbal, M. Khalid, A. Rehim, W.F.A. Mosa, L. Sas-Paszt, S.A. Marey & A.A. Hatamleh, Wheat straw biochar produced at a low temperature enhanced maize growth and yield by influencing soil properties of Typic calciargid. Sustainability. 15, 9488 (2023). DOI: https://doi.org/10.3390/su15129488
Aon, M., M. Khalid, Z.A. Zahir & R. Ahmad, Low temperature produced citrus peel and green-waste biochar improved maize growth and nutrient uptake, and chemical properties of calcareous soil. Pak. J. Agric. Sci. 52(3), 627-636 (2015).
Cao, X., R. Reichel & N. Brüggemann, Fenton oxidation of biochar improves retention of cattle slurry nitrogen. J. Environ. Qual. 51, 1319-1326 (2022). DOI: https://doi.org/10.1002/jeq2.20419
Chan, K. & Z. Xu, Biochar: Nutrient properties and their enhancement. In: Biochar for environmental management. J. Lehmann & Joseph, S., ed. Science and Technology Earthscan London Pp. 67-84 (2009).
Cheng, C.H., J. Lehmann & M.H. Engelhard, Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochim. Cosmochim. Ac. 72, 1598-1610 (2008). DOI: https://doi.org/10.1016/j.gca.2008.01.010
Cheng, C.H., J. Lehmann, J.E. Thies, S.D. Burton & M.H. Engelhard, Oxidation of black carbon by biotic and abiotic processes. Org. Geochem. 37, 1477-1488 (2006). DOI: https://doi.org/10.1016/j.orggeochem.2006.06.022
Clare, N.T. & A.E. Stevenson, Measurement of feed intake by grazing cattle and sheep, Determination of nitrogen in faeces and feeds using an Auto Analyzer. New Zeal. J. Agric. Res. 7(2), 198-204 (2011). DOI: https://doi.org/10.1080/00288233.1964.10418151
FAO, Agriculture, Food, and Water: A Contribution to the World Water Development Report, Rome, Italy (2011).
FAO, World reference base for soil resources. International Soil Classification System for naming soils and creating legends for soil maps (2015).
Gee, G.W. & J.W. Bauder, Particle-size analysis. In: Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods, 2nd edition, A. Klute, ed. American Society of Agronomy, Madison, USA Pp. 383-411 (1986). DOI: https://doi.org/10.2136/sssabookser5.1.2ed.c15
Gou, Z., H. Zheng, Z. He, Y. Su, S. Chen, H. Chen, G. Chen, N.L. Ma & Y. Sun, The combined action of biochar and nitrogen-fixing bacteria on microbial and enzymatic activities of soil N cycling. Environ. Poll. 317, 120790 (2023). DOI: https://doi.org/10.1016/j.envpol.2022.120790
Gundale, M.J. & T.H. Deluca, Temperature and substrate influence the chemical properties of charcoal in the ponderosa pine/Douglas-fir ecosystem. Forest Ecol. Manag. 231, 86-93 (2006). DOI: https://doi.org/10.1016/j.foreco.2006.05.004
Jackson, M.L., Soil chemical analysis. Constable Co. Ltd., London (1962).
Jiang, T., R. Xu, T. Gu & J. Jiang. Effect of crop-straw derived biochars on Pb(II) adsorption in two variable charge soils. J. Integ. Agric. 13(3), 507-516 (2014). DOI: https://doi.org/10.1016/S2095-3119(13)60706-6
Joseph, S., L. Annette, C.L.V. Zwieten, N. Bolan, A.Budai, W. Buss, M.L. Cayuelal, E.R. Graber, J.A. Ippolito, Y. Kuzyakov, Y. Luo, Y.S. Ok, K.N. Palansooriya, J. Shepherd, S. Stephens, Z.H. Weng & J. Lehmann, How biochar works, and when it doesn't: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy. 13, 1731-1764 (2021). DOI: https://doi.org/10.1111/gcbb.12885
Kameyama, K., T. Miyamoto, T. Shiono & Y. Shinogi, Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil. J. Environ. Qual. 41, 1131-1137 (2012). DOI: https://doi.org/10.2134/jeq2010.0453
Kamphake, L.J., S.A. Hannah & J.M. Cohen, Automated analysis for nitrate by hydrazine reduction. Water Res. 1, 205-216 (1967). DOI: https://doi.org/10.1016/0043-1354(67)90011-5
Kharel, G., O. Sacko, X. Feng, J.R. Morris, C.L. Phillips, K. Trippe, S. Kumar & J.W. Lee, Biochar surface oxygenation by ozonization for super high cation exchange capacity. ACS Sustainable Chem. Eng. 7(19), 16410-16418 (2019). DOI: https://doi.org/10.1021/acssuschemeng.9b03536
Knoblauch, C., A.A. Maarifat, E.M. Pfeiffer & S.M. Haefele, Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils. Soil Biol. Biochem. 43, 1768-1778 (2012). DOI: https://doi.org/10.1016/j.soilbio.2010.07.012
Ladha, J.K., H. Pathak, T.J. Krupnik, J. Six & C.V. Kessel, Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects. Adv. Agron. 57, 85-156 (2005). DOI: https://doi.org/10.1016/S0065-2113(05)87003-8
Lehmann, J., Bio-energy in the black. Front. Ecol. Environ. 5, 381-387 (2007). DOI: https://doi.org/10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2
Leoppert, R.H., C.T. Hallmark & M.M. Koshy, Routine procedure for rapid determination of soil carbonates. J. Soil Sci. Soc. Am. 48, 1030-1033 (1984). DOI: https://doi.org/10.2136/sssaj1984.03615995004800050016x
Li, L., Y.J. Zhang, A. Novak, Y. Yang & J. Wang, Role of biochar in improving sandy soil water retention and resilience to drought. Water. 13, 407 (2021). DOI: https://doi.org/10.3390/w13040407
Liu, L.G. Deng & X. Shi, Adsorption characteristics and mechanism of P-nitrophenol by pine sawdust biochar samples produced at different pyrolysis temperatures. Sci. Rep. 10, 5149 (2020). DOI: https://doi.org/10.1038/s41598-020-62059-y
Nelson, D.W. & L.E. Sommers, Total carbon, organic carbon and organic matter. In: Methods of soil analysis, part 2: Chemical and microbiological properties. A. Klute, ed. Am. Soc. Agron. Madison, WI, USA, Pp. 570-571 (1982).
Nigussie, A., E. Kissi, M. Misganaw & G. Ambaw, Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted Soils. Am.-Eurasian J. Agric. Environ. Sci. 12(3), 369-376 (2012).
Olsen, S.R. & L.E. Sommers, Phosphours. In: Methods of soil analysis, Argonomy. No. 9, Part 2: Chemical and microbiological properties, 2nd edition, A.L. Page, ed. Am. Soc. Agron., Madison, WI, USA, Pp. 403-430 (1982). DOI: https://doi.org/10.2134/agronmonogr9.2.2ed.c24
Rhoades, J.D., Cation exchange capacity. In: Methods of soil analysis, Argonomy. No. 9, Part 2: Chemical and microbiological properties, 2nd edition, A.L. Page, ed. American Society of Agronomy, Madison, WI, USA, Pp. 149-157 (1982). DOI: https://doi.org/10.2134/agronmonogr9.2.2ed.c8
Richards, L.A., Diagnosis and improvement of saline and alkali soil. USDA Agric. (1954). DOI: https://doi.org/10.1097/00010694-195408000-00012
Saleem, M., Z.H. Pervaiz, J. Contreras, J.H. Lindenberger, B.M. Hupp, D. Chen, Q. Zhang, C. Wang, J. Iqbal & P. Twigg, Cover crop diversity improves multiple soil properties via altering root architectural traits. Rhizosphere. 16, 100248 (2020). DOI: https://doi.org/10.1016/j.rhisph.2020.100248
Sanchez, M.E., E. Lindao, D. Margaleff, O. Martınez & A. Moran, Pyrolysis of agricultural residues from rape and sunflowers: Production and characterization of bio-fuels and biochar soil management. J. Anal. Appl. Pyrolosis. 85, 142-144 (2009). DOI: https://doi.org/10.1016/j.jaap.2008.11.001
Shi, Y.L., X.R. Liu, P.L. Gao, Q.W. Zhang & Z.L. Yang, Effects of biochar and organic fertilizer on saline-alkali soil N2O emission in the North China Plain. Environ. Sci. 38, 5333-5343 (2017).
Soltanpour, P.N. & A.P. Schwab, A new soil test for simultaneous extraction of macro and micronutrients in alkaline soils. Commun. Soil Sci. Plant Anal. 8, 195-207 (1977). DOI: https://doi.org/10.1080/00103627709366714
Steiner, C., W.G. Teixeira, J. Lehmann, T. Nehls, J.L.V.M. Do, W.E.H. Blum & W. Zech, Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil. 291, 275-290 (2007). DOI: https://doi.org/10.1007/s11104-007-9193-9
Tomczyk, A., Z. Sokołowska & P. Boguta, Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Biotechnol. 19, 191-215 (2020). DOI: https://doi.org/10.1007/s11157-020-09523-3
Tsai, C.C. & Y.F. Chang, Nitrogen availability in biochar-amended soils with excessive compost application. Agron. 10(3), 444 (2020). DOI: https://doi.org/10.3390/agronomy10030444
Wang, T.M., C. Arbestain, M. Hedley & P. Bishop, Chemical and bioassay characterisation of nitrogen availability in biochar produced from dairy manure and biosolids. Org. Geochem. 51, 45-54 (2012). DOI: https://doi.org/10.1016/j.orggeochem.2012.07.009
Weber, K. & P. Quicker, Properties of biochar. Fuel. 217, 240-261 (2018). DOI: https://doi.org/10.1016/j.fuel.2017.12.054
Woolf, D. & J. Lehmann, Modelling the long-term response to positive and negative priming of soil organic carbon by black carbon. Biogeochemistry. 111, 83-95 (2012). DOI: https://doi.org/10.1007/s10533-012-9764-6
Yaashikaa, P.R., P.S. Kumara, S. Varjanic & A. Saravanand, A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnol. Rep. 28, e00570 (2020). DOI: https://doi.org/10.1016/j.btre.2020.e00570
Yuan, J., R. Xu, N. Wang & J. Li, Amendment of acid soils with crop residues and biochars. Pedosphere. 21, 302-308 (2011). DOI: https://doi.org/10.1016/S1002-0160(11)60130-6
Zhang, Y.L. Wu, X. Zhang, A. Deng, R. Abdulkareem, D. Wang, C. Zheng & W. Zhang, Effect of long-term organic amendment application on the vertical distribution of nutrients in a vertisol. Agron. 12, 1162 (2022). DOI: https://doi.org/10.3390/agronomy12051162
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Muhammad Aon, Shahid Hussain, Muhammad Amjad Bashir, Muhammad Abbas, Sajid Masood, Qasim Ali
This work is licensed under a Creative Commons Attribution 4.0 International License.