POTENTIAL ROLE OF MELATONIN IN ALLEVIATING HEAVY METALS PHYTOTOXICITY IN PLANTS

Authors

  • Muhammad Ali Institute of Agro-Industry & Environment, The Islamia University of Bahawalpur, Pakistan
  • Muhammad Ameen Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan
  • Muhammad Waqas Malik Institute of Agro-Industry & Environment, The Islamia University of Bahawalpur, Pakistan
  • Solaima Akhter Tamimi Institute of Agro-Industry & Environment, The Islamia University of Bahawalpur, Pakistan
  • Kashif Mustafa Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan
  • Muhammad Irfan Nazir Water Testing Laboratory, Public Health Engineering Division, Bahawalpur, Pakistan
  • Muhammad Irfan Institute of Agro-Industry & Environment, The Islamia University of Bahawalpur, Pakistan
  • Salman Ahmad Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan
  • Muhammad Ashar Ayub Institute of Agro-Industry & Environment, The Islamia University of Bahawalpur, Pakistan
  • Muhammad Nadeem Institute of Agro-Industry & Environment, The Islamia University of Bahawalpur, Pakistan

DOI:

https://doi.org/10.34016/pjbt.2023.20.02.782

Keywords:

Melatonin, Heavy metals, Plant stress, Environmental toxicology, Stress tolerance

Abstract

Heavy metal contamination is a major environmental concern because of their potential to severely damage plant growth and yield. Plants are unable to complete their morpho-physiological growth when subjected to heavy metal stress because heavy metals are toxic and can accumulate in plant tissues, disrupting normal physiological processes. Melatonin, a hormone produced by plants has been shown to play an important role in protecting plants against heavy metal toxicity by mitigating the damage caused by oxidative stress and improving antioxidative defense mechanism. This review provides an overview of the existing literature on the potential use of melatonin in plant sciences with the purpose of determining its effectiveness in alleviating heavy metal toxicity in plants. The increase in antioxidative enzymes superoxide dismutase and catalase and the levels of reactive oxygen species (ROS) and malondialdehyde are lowered after exogenous melatonin treatment indicating that heavy metal-induced oxidative stress in plants can be mitigated. Under heavy metal stress, melatonin provision increases plant growth and yield in a several ways, including by enhancing photosynthetic activity, nitrogen absorption, and root characteristics. It is concluded in this review that research on melatonin in plant sciences is providing a new avenue for reducing plant heavy metal stress. Melatonin mediated heavy metal resistance can have a great potential in mitigating the adverse effects of transgenic metals which open new avenues of research in plant stress physiology

Metrics

Metrics Loading ...

References

Ali, M., Kamran, M., Abbasi, G. H., Saleem, M. H., Ahmad, S., Parveen, A., Malik, Z., Afzal, S., Ahmar, S., & Dawar, K. M., Melatonin-induced salinity tolerance by ameliorating osmotic and oxidative stress in the seedlings of two tomato (Solanum lycopersicum L.) cultivars. Journal of Plant Growth Regulation 40 2236-2248 (2021). DOI: https://doi.org/10.1007/s00344-020-10273-3

Ali, M., Parveen, A., Malik, Z., Kamran, M., Saleem, M. H., Abbasi, G. H., Ahmad, I., Ahmad, S., Sathish, M., & Okla, M. K., Zn alleviated salt toxicity in Solanum lycopersicum L. seedlings by reducing Na+ transfer, improving gas exchange, defense system and Zn contents. Plant Physiology and Biochemistry 186 52-63 (2022). DOI: https://doi.org/10.1016/j.plaphy.2022.06.028

Altaf, M. A., Shahid, R., Ren, M.-X., Altaf, M. M., Jahan, M. S., & Khan, L. U., Melatonin mitigates nickel toxicity by improving nutrient uptake fluxes, root architecture system, photosynthesis, and antioxidant potential in tomato seedling. Journal of Soil Science and Plant Nutrition 21 1842-1855 (2021). DOI: https://doi.org/10.1007/s42729-021-00484-2

Arnao, M. B., Hernández-Ruiz, J., Cano, A., & Reiter, R. J., Melatonin and carbohydrate metabolism in plant cells. Plants 10:(9) 1917 (2021). DOI: https://doi.org/10.3390/plants10091917

Asif, M., Pervez, A., & Ahmad, R., Role of melatonin and plant‐growth‐promoting rhizobacteria in the growth and development of plants. CLEAN–Soil, Air, Water 47:(6) 1800459 (2019). DOI: https://doi.org/10.1002/clen.201800459

Chen, Y. E., Mao, J. J., Sun, L. Q., Huang, B., Ding, C. B., Gu, Y., Liao, J. Q., Hu, C., Zhang, Z. W., & Yuan, S., Exogenous melatonin enhances salt stress tolerance in maize seedlings by improving antioxidant and photosynthetic capacity. Physiologia plantarum 164:(3) 349-363 (2018). DOI: https://doi.org/10.1111/ppl.12737

Colombage, R., Singh, M. B., & Bhalla, P. L., Melatonin and Abiotic Stress Tolerance in Crop Plants. International Journal of Molecular Sciences 24:(8) 7447 (2023). DOI: https://doi.org/10.3390/ijms24087447

El-Mogy, M. M., Ludlow, R. A., Roberts, C., Müller, C. T., & Rogers, H. J., Postharvest exogenous melatonin treatment of strawberry reduces postharvest spoilage but affects components of the aroma profile. Journal of Berry Research 9:(2) 297-307 (2019). DOI: https://doi.org/10.3233/JBR-180361

Fan, J., Xie, Y., Zhang, Z., & Chen, L., Melatonin: a multifunctional factor in plants. International Journal of Molecular Sciences 19:(5) 1528 (2018). DOI: https://doi.org/10.3390/ijms19051528

Farooq, M. A., Islam, F., Ayyaz, A., Chen, W., Noor, Y., Hu, W., Hannan, F., & Zhou, W., Mitigation effects of exogenous melatonin-selenium nanoparticles on arsenic-induced stress in Brassica napus. Environmental Pollution 292 118473 (2022). DOI: https://doi.org/10.1016/j.envpol.2021.118473

Gong, X., Shi, S., Dou, F., Song, Y., & Ma, F., Exogenous melatonin alleviates alkaline stress in Malus hupehensis Rehd. by regulating the biosynthesis of polyamines. Molecules 22:(9) 1542 (2017). DOI: https://doi.org/10.3390/molecules22091542

Goyal, D., Yadav, A., Prasad, M., Singh, T. B., Shrivastav, P., Ali, A., Dantu, P. K., & Mishra, S., Effect of heavy metals on plant growth: an overview. Contaminants in agriculture: sources, impacts and management 79-101 (2020). DOI: https://doi.org/10.1007/978-3-030-41552-5_4

Gu, Q., Xiao, Q., Chen, Z., & Han, Y., Crosstalk between melatonin and reactive oxygen species in plant abiotic stress responses: an update. International Journal of Molecular Sciences 23:(10) 5666 (2022). DOI: https://doi.org/10.3390/ijms23105666

Hoque, M. N., Tahjib-Ul-Arif, M., Hannan, A., Sultana, N., Akhter, S., Hasanuzzaman, M., Akter, F., Hossain, M. S., Sayed, M. A., & Hasan, M. T., Melatonin modulates plant tolerance to heavy metal stress: morphological responses to molecular mechanisms. International Journal of Molecular Sciences 22:(21) 11445 (2021). DOI: https://doi.org/10.3390/ijms222111445

Huangfu, L., Chen, R., Lu, Y., Zhang, E., Miao, J., Zuo, Z., Zhao, Y., Zhu, M., Zhang, Z., & Li, P., OsCOMT, encoding a caffeic acid O‐methyltransferase in melatonin biosynthesis, increases rice grain yield through dual regulation of leaf senescence and vascular development. Plant Biotechnology Journal 20:(6) 1122-1139 (2022). DOI: https://doi.org/10.1111/pbi.13794

Imran, M., Khan, A. L., Mun, B.-G., Bilal, S., Shaffique, S., Kwon, E.-H., Kang, S.-M., Yun, B.-W., & Lee, I.-J., Melatonin and nitric oxide: Dual players inhibiting hazardous metal toxicity in soybean plants via molecular and antioxidant signaling cascades. Chemosphere 308 136575 (2022). DOI: https://doi.org/10.1016/j.chemosphere.2022.136575

Jahan, M. S., Guo, S., Baloch, A. R., Sun, J., Shu, S., Wang, Y., Ahammed, G. J., Kabir, K., & Roy, R., Melatonin alleviates nickel phytotoxicity by improving photosynthesis, secondary metabolism and oxidative stress tolerance in tomato seedlings. Ecotoxicology and environmental safety 197 110593 (2020). DOI: https://doi.org/10.1016/j.ecoenv.2020.110593

Ke, Q., Ye, J., Wang, B., Ren, J., Yin, L., Deng, X., & Wang, S., Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism. Frontiers in plant science 9 914 (2018). DOI: https://doi.org/10.3389/fpls.2018.00914

Khan, M., Ali, S., Manghwar, H., Saqib, S., Ullah, F., Ayaz, A., & Zaman, W., Melatonin function and crosstalk with other phytohormones under normal and stressful conditions. Genes 13:(10) 1699 (2022). DOI: https://doi.org/10.3390/genes13101699

Kul, R., Esringü, A., Dadasoglu, E., Sahin, Ü., Turan, M., Örs, S., Ekinci, M., Agar, G., & Yildirim, E., Melatonin: role in increasing plant tolerance in abiotic stress conditions. Abiotic and Biotic Stress in Plants 1 19 (2019). DOI: https://doi.org/10.5772/intechopen.82590

Kumar, S., Shah, S. H., Vimala, Y., Jatav, H. S., Ahmad, P., Chen, Y., & Siddique, K. H., Abscisic acid: Metabolism, transport, crosstalk with other plant growth regulators, and its role in heavy metal stress mitigation. Frontiers in Plant Science 13 972856 (2022). DOI: https://doi.org/10.3389/fpls.2022.972856

Madebo, M. P., LUO, S.-m., Li, W., ZHENG, Y.-h., & Peng, J., Melatonin treatment induces chilling tolerance by regulating the contents of polyamine, γ-aminobutyric acid, and proline in cucumber fruit. Journal of Integrative Agriculture 20:(11) 3060-3074 (2021). DOI: https://doi.org/10.1016/S2095-3119(20)63485-2

Nawaz, M. A., Chen, C., Shireen, F., Zheng, Z., Jiao, Y., Sohail, H., Afzal, M., Imtiaz, M., Ali, M. A., & Huang, Y., Improving vanadium stress tolerance of watermelon by grafting onto bottle gourd and pumpkin rootstock. Plant Growth Regulation 85 41-56 (2018). DOI: https://doi.org/10.1007/s10725-018-0372-x

Ni, J., Wang, Q., Shah, F. A., Liu, W., Wang, D., Huang, S., Fu, S., & Wu, L., Exogenous melatonin confers cadmium tolerance by counterbalancing the hydrogen peroxide homeostasis in wheat seedlings. Molecules 23:(4) 799 (2018). DOI: https://doi.org/10.3390/molecules23040799

Rehaman, A., Mishra, A. K., Ferdose, A., Per, T. S., Hanief, M., Jan, A. T., & Asgher, M., Melatonin in plant defense against abiotic stress. Forests 12:(10) 1404 (2021). DOI: https://doi.org/10.3390/f12101404

Samanta, S., Singh, A., Banerjee, A., & Roychoudhury, A., Exogenous supplementation of melatonin alters representative organic acids and enzymes of respiratory cycle as well as sugar metabolism during arsenic stress in two contrasting indica rice cultivars. Journal of Biotechnology 324 220-232 (2020). DOI: https://doi.org/10.1016/j.jbiotec.2020.10.013

Seleiman, M. F., Ali, S., Refay, Y., Rizwan, M., Alhammad, B. A., & El-Hendawy, S. E., Chromium resistant microbes and melatonin reduced Cr uptake and toxicity, improved physio-biochemical traits and yield of wheat in contaminated soil. Chemosphere 250: 126239 (2020). DOI: https://doi.org/10.1016/j.chemosphere.2020.126239

Shi, H., Love, J., & Hu, W. (2017). Melatonin in plants. In (Vol. 8, pp. 1666): Frontiers Media SA. DOI: https://doi.org/10.3389/fpls.2017.01666

Sun, C., Liu, L., Wang, L., Li, B., Jin, C., & Lin, X., Melatonin: A master regulator of plant development and stress responses. Journal of Integrative Plant Biology 63:(1) 126-145 (2021). DOI: https://doi.org/10.1111/jipb.12993

Talaat, N. B., Polyamine and nitrogen metabolism regulation by melatonin and salicylic acid combined treatment as a repressor for salt toxicity in wheat (Triticum aestivum L.) plants. Plant Growth Regulation 95:(3) 315-329 (2021). DOI: https://doi.org/10.1007/s10725-021-00740-6

Wang, K., Xing, Q., Ahammed, G. J., & Zhou, J., Functions and prospects of melatonin in plant growth, yield, and quality. Journal of Experimental Botany 73:(17) 5928-5946 (2022). DOI: https://doi.org/10.1093/jxb/erac233

Xia, H., Ni, Z., Hu, R., Lin, L., Deng, H., Wang, J., Tang, Y., Sun, G., Wang, X., & Li, H., Melatonin alleviates drought stress by a non-enzymatic and enzymatic antioxidative system in kiwifruit seedlings. International journal of molecular sciences 21:(3) 852 (2020). DOI: https://doi.org/10.3390/ijms21030852

Xiang, G., Lin, L., Liao, M. a., Tang, Y., Liang, D., Xia, H., Wang, J., Wang, X., Sun, G., & Zhang, H., Effects of melatonin on cadmium accumulation in the accumulator plant Perilla frutescens. Chemistry and Ecology 35:(6) 553-562 (2019). DOI: https://doi.org/10.1080/02757540.2019.1600683

Xie, Q., Zhang, Y., Cheng, Y., Tian, Y., Luo, J., Hu, Z., & Chen, G., The role of melatonin in tomato stress response, growth and development. Plant Cell Reports 41:(8) 1631-1650 (2022). DOI: https://doi.org/10.1007/s00299-022-02876-9

Zafar, S., Hasnain, Z., Anwar, S., Perveen, S., Iqbal, N., Noman, A., & Ali, M., Influence of melatonin on antioxidant defense system and yield of wheat (Triticum aestivum L.) genotypes under saline condition. Pak. J. Bot 51:(6) 1987-1994 (2019). DOI: https://doi.org/10.30848/PJB2019-6(5)

Zand, A. D., Tabrizi, A. M., & Heir, A. V., Incorporation of biochar and nanomaterials to assist remediation of heavy metals in soil using plant species. Environmental Technology & Innovation 20: 101134 (2020). DOI: https://doi.org/10.1016/j.eti.2020.101134

Zhou, P., Adeel, M., Shakoor, N., Guo, M., Hao, Y., Azeem, I., Li, M., Liu, M., & Rui, Y., Application of nanoparticles alleviates heavy metals stress and promotes plant growth: An overview. Nanomaterials 11:(1) 26 (2020) DOI: https://doi.org/10.3390/nano11010026

Downloads

Published

2023-10-30

How to Cite

Ali, M., Muhammad Ameen, Malik, M. W., Tamimi, S. A., Mustafa, K., Nazir, M. I., … Muhammad Nadeem. (2023). POTENTIAL ROLE OF MELATONIN IN ALLEVIATING HEAVY METALS PHYTOTOXICITY IN PLANTS. Pakistan Journal of Biotechnology, 20(02), 288–292. https://doi.org/10.34016/pjbt.2023.20.02.782

Most read articles by the same author(s)