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ABSTRACT 
Research for xylanase biosynthesis is an interesting area due to its important industrial 

application. This review paper serves as an overview of xylanase bioproduction and application 
as well as its producing microorganisms, substrates and process variables, to consider the future 
prospects of xylanases in biotechnological applications. Several approaches should be applied to 
overcome main limitations which inhibit widespread commercial and industrial application of 
this enzyme; low production yield and the high total cost. 
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INTRODUCTION 

Plant biomass is a huge substrate on the earth 
in which consists of cellulose, hemicellulose and 
lignin, which should be hydrolyzed by acids or 
enzymes to lower molecular weight carbohyd-
rates and finally to monomeric sugars (Yoonan 
and Kongkiattikajorn, 2004). Xylan, the polymer 
of xyloseis the main component of hemicellulose. 
This heteropolysaccharide can be used as subst-
rates for microbial growth and production.  
   Hydrolysis of xylan to xylose is possible by 
acid or enzymatic methods. Hydrolysis by enzymes  
has main advantages of higher purityand lower 
chemical pollution problem. Xylose can be used 
for the production of useful biometabolites e.g. 
alcohols (ethanol, butanol, and xylitol) and single 
cell proteins. Production of purified xylanase and 
cellulose enzymes are reported on rice straw and 
rice husk (Dutta et al., 2014). In this research, the 
amount of produced xylose and reducing sugars 
are estimated. 
 

Xylanase chemistry 
Xylanase as a heteropolysaccharideis a major 

component of cell walls of plant hemicelluloses. 
Endoxylanase randomly hydrolyses the main chain 
of xylan to form xylooligosaccharides, which are 
then degraded by xylanolytic enzymes such as 
xylosidase and arabinofuranosidases. Accessory 
enzymes, are able to cleave side chain groups of 
heteroxylan. The final hydrolysis products of 
xylan are xylose and oligosaccharides, which 
have potential industrial application in the foods, 
paper, agricultural industries, as well as pharma- 
ceuticals, and renewable fuel (Sriyapai et al., 
2011; Heck et al., 2006; He et al., 2010). 

 
 

Based on the physicochemical properties and 
amino acid sequence similarities of their catalytic 
domains by hydrophilic cluster analysis, xyla-
nases are classified into two glycoside hydrolase 
groups: family 10 (formerly family F, a high 
molecular mass >30 KDa and low isoelectric 
point) and family 11 (formerly family G, with 
low molecular mass <30kDa and high isoelectric 
point) (Coughlan et al., 1993). Many xylanases 
belonging to family 11 are obtained from Actino-
mycetes (Sriyapai et al., 2011; Callins et al., 
2005). 

The high optimum temperature of xylanase 
and its alkaline optimal pH leads to its tremens-
dous potential for application of enzyme for 
special benefits e.g. bleaching of kraft pulps and 
other biotechnological processes (Mohana et al., 
2008; Lakshmi et al., 2009). 

 

Xylanase producing microorganism 
The xylanase producing microorganisms are 

isolated form soil collected from decaying agri-
cultural waste. Screening of xylanase producing 
bacteria should be carried out on xylan-
containing medium (He et al., 2010). Many 
isolates are reported as good producer of 
xylanase in solid state fermentation (Yang et al., 
2008; Yang et al., 2006). Table 1 shows a list of 
xyla-nase producing fungi were grown on 
agricultural waste. Also in Table 2, different 
xylanase producers on several substrates in 
different conditions are listed. 

Xylanase of Acinetobacter junii has been 
lyophilized to enhance practical applicability and 
storage stability (Lo et al., 2010). Kluyvera 
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species strain OM3 isolated from spent mush-
room substrate could produce a high level of 
cellulose – free xylanase (5.12 u/ml) with maxi-
mum activities at 70ºC and pH 8. In this study, 
100% and 71% activity has retained after 
incubation at 60°C and 70°C and maintain 
stability over a pH range of 5 to 9 (Xin et al., 
2013). Kluyvera species is a good anaerobic 
bacterium whichis capable of producing effective 
cellulase and xylanase and has high temperature 
and pH stability (Xin et al., 2013). Production of 
41 KDa xylanase from Paenibacillus campinase-
nsis is reported under various pH, temperature as 
well as alternative carbon and nitrogen sources. 
The results showed that the highest specific 
activity of xylanase in crude extract was obtained 
at 24 h, 37°C, pH 8. Xylanase activities of 56.8 
% and 51. 9% were founded after 4 h incubation 
in pH 7 and 9 at 65°C, respectively (Ko et al., 
2010). 

Thermomyces lanuginosusis reported as 
producer of thermostable GF11 endo-xylanase 
encoded by XynA gene. Escherichia coli is also 
one of the most extensively used prokaryotic 
organism for the industrial production of enzyme 
because of its well- characterized genetics, and 
its ability to grow rapidly and at high density an 
inexpensive substrates (Le et al., 2014). 

There are very few reports showing the ability 
of the fungus to produce industrially important 
enzymes under nonsterile condition. Anyway, 
Promicronospora sp is capable of producing 
xylanase from rice straw in nonsterile fermen-
tation (Kumar et al., 2011).Trichoderma sp. can 
secrete large amounts of efficient xylanase for 
industrial production. (He et al., 2010; Wong et 
al., 1992).Xylanase production synthesized by 
Pleurotus eryngii. Xylanase activity was checked 
by using oat-spelt xylan as a substrate and the 
reducing group was detected through dinitro-
salicylic assay method (Altaf et al., 2010). 

The selective production of xylooligosaccha-
rides is conducted by partially purified xylanase 
from Aspergillus foetidus MTCC 4895 (Chapla et 
al., 2012). 

In recent years, many cellulolytic bacteria 
have been recognized for their ability to 
hydrolyze   lignocellulosic materials for bioenergy 
production.  Those cellulolytic bacteria include 
the genera of Bacillus, Ruminococcus, Strepto-
myces, Bacteroides and Cellulomonas (Lo et al., 
2010; Gessesse et al., 1999; Rapp et al., 1986). 
 

Solid state fermentation (SSF) in xylanase 
production: SSF is the growth of organisms on 
moist substrates in the absence of free- flowing 

water. The use of SSF for the production of 
enzymes and other products has many advantages 
over submerged fermentation (Gessesse et al., 
1999). SSF do not need for complex machinery 
and sophisticated control system with less 
volume of liquid for product recovery, which 
leads to reduced cost of downstream processing 
and subsequent waste treatment. Also, other 
advantages of this system are usability of simple 
and cheap media for the fermentation and lower 
energy demand, (often a high product yield) and 
lower risk of contamination due to the inability of 
most contamination to grow in the absence of 
free flowing water (Gessesse et al., 1999).  

A large number of fungal species are known 
to grow well on moist substrates in the absence 
of free- flowing water whereas many bacteria are 
unable to grow under this condition. As a result, 
most studies involving SSF have been conducted 
by using fungi.  

SSF has interest for production of xylanase 
similar to many other enzymes due to lower 
operation costs and energy requirements, as well 
as simple plant and equipment projects in 
compared to submerged fermentation (Heck et 
al., 2006; Heck et al., 2005; Khosravi Darani et 
al., 2008). Xylanase production by P. thermo-
phile J18 was carried out in SSF using wheat 
straw as substrate (Yang. et al., 2008). Also, 
xylanase production by a newly isolated 
Aspergillus terreus MTCC866has been optimized 
using palm fiber in SSF (Table1) (Lakshmi et al., 
2009; Yang et al., 2008). 
 

Xylanase applications 
Research for xylanase biosynthesis is an inte-

resting area due to its important industrial appli-
cation e.g. improving the digestibility of animal 
feed, bleaching of kraft pulp, bioconversion of 
lignocellulosic waste into their constituent 
sugars, clarification of juices, (Mohana et al., 
2008) as well as extraction of plant oils, extra-
cellular polymeric substances, improving nutri-
tional value of silage, green feed, coffee, starch 
and as bleaching agents in pulp and paper indus-
try (Lakshmi et al., 2009). However, low produc-
tion yield and the high total cost inhibit wide-
spread commercial and industrial application of 
this enzyme (Lo et al., 2010; Rapp et al., 1986). 
As it was mentioned before, xylanase is able to 
hydrolyze the water soluble arabino-xylanase. 
This reaction leads to the release of lower 
molecular weight fraction with improved impact 
on specific volume expansion capacity and 
firmness of bread (Primo-Martin et al., 2005). 
According to this 0.01% (w/w), xylanase led to 
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approximately 19.6% decline of the total 
phenolic content (Yang et al., 2014). 

The potential application of xylanases also 
includes reducing sugars by hydrolysis of lingo-
cellulosic biomass. These sugars are further 
fermented for the biofuel production (e.g., ethanol, 
butanol). (Xin et al., 2013). In compared to 
aerobic fungi and bacteria, few investigations are 
reported on hydrolytic enzymes by anaerobic 
bacteria (Bajpai 1996). 

Browning is a problem of wheat products (e.g. 
wheat dough, chapatti's, pasta, and fresh oriental 
noodles) (Demeke et al., 2001) during storage, 
transport and marketing (Baik et al., 1995). This 
phenomenon is due to the activity of polyphenol 
oxides (PPO) and peroxidase (PO)which catalyze 
the oxidation of free, reduced phenolic compounds  
to pigment, forming elements (Kruger et al., 
1992) (with an exception to the color resulting 
from carotenoids (Francis, 2000). Reported 
approaches to overcome browning focus on 
inactivating the PPO, the PO or eliminating the 
substrates of these enzymes. Glucose oxidase 
(GOX) was reported as a dough bleaching 
enzyme because of it’s β-carotene degradation 
capacity (Gélinas et al., 1998). Apart from GOX, 
xylanase was also commonly used for improving 
the properties of whole wheat dough (Bonet et 
al., 2006; Primo Martin et al., 2005; Steffolani et 
al., 2012).  

One of the exciting application of xylanases is 
the production of xylo- oligosaccharides (XOS) 
from many agrowastes such as concorb (also 
known as maize cores) (Anand et al., 2013). 
These XOS exhibit prebiotic effect when 
consumed as a part of the diet (Driss et al., 
2014). 

 

Results 
      Xylanases can be applied for waste manage-
ment and production of many useful products. 
Production of oligosaccharides can be further 
considered as functional food sweeteners and 
additives. To meet the needs of industry, more 
attention of research should be focused on the 
increasing ability of to hydrolyze soluble or 
insoluble xylans as well as improved enzyme 
stability in different temperature pH, and 
inhibitors. Genetic engineering and recombinant 
DNA technology may have an important role in 
the large-scale expression of xylanases. No 
individual enzyme may meet all of the 
requirements of the feed and food industries. 
Moreover, as industrial applications require 
cheaper enzymes, the elevation of expression 

levels seems crucial to ensure the sustainability 
of the process. 
 

Conclusion 
Agricultural wastes possess large quantities of 
hemicellulose (e.g. 25% in rice straw). The 
process for bioconversion of them to value-added 
products e.g. biofuels and chemicals are 
receiving increased attention. Such renewable 
resources are required for reduction of petroleum 
consumption. This is the best way for hydrolysis 
of agro-industrial wastes inan enzymatic solution. 
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Table-1: Comparison of xylanase production from other fungi strains grown on agricultural 

waste  

Microorganisms Substrate Xylanase activity References 

Aspergillus terreus 
(MTCC8661) 

Palm oil fiber 115269u/g Lakshmi et al., 2009 

Thermomyces lanuginosus Sorghum straw 48000u/g Bakri et al., 2003 
Trichoderma 
longibrachiatum 

Wheat bran and wheat 
straw 

592.7 u/g Azin et al., 2007 

Aspergillus niger BO3 1.5% wheat bran+ 2.4% 
corn cobs+0.6% malt sprout 

996 u/ml Dobrev et al., 2006 

Fusarium oxysporum 2% corn cobs 245 u/ml Kekos et al., 1996 
Pseudomonas sp.WLUNO24 7% wheat bran 450 u/ml Xu et al., 2005 
Aspergillus terreus mutated 
strain 

1% xylan, 0.5% peptone, 
0.5% yeast extract, 0.1% 
KH2PO4, 0.05% MgSO4 

42.2 u/ml Geweely et al., 2006 
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Table - 2: Comparison of different xylanase producers on several substrates in different condition 

No
. 
 

Microorganism Substrate Enzyme 
activity 

Production 
rate 

Productivity Heat 
Resistance 

(Cͦ) 

Optimal 
pH 

Culture 
method 

References 

1 Streptomyces 
thermocarboxud
us subsp MW8 

1%(w/v) 
soytone+ 1% 
(w/v) NaCl, and 
0.5%(w/v) xylan 

35714 
u/g 

  96 hours 372.02 
u/g/h 

50 7 Solid-state 
fermentation 

Chi et al., 
2013 

2 Bulkholderia sp. 
DMAX 

Distillery spent 
wash 

5200-
5600 
u/g 

15 
hours 

346.66-
373.33 
u/g/h 

50 8.6 Solid-state 
fermentation 

Mohana 
et al., 
2008 

3 Bacillus 
stearothermophil
us 
ATCC12980 
(Rockville Co.) 

Xylan, 10g/ 
polypepton, 20g/ 
yeast extract, 
2.5g/ 
Ammonium 
nitrate, 2g/ 
phosphate mono-
potasic, 2g/ 
MgSO4.H2O, 1g/ 
MnSO4, 0.05g 

8700 
u/g 

48 
hours 

181.25 
u/g/h 

60 7 Solid-state 
fermentation 

 

4 Paecilomyces 
thermophile J18 

Wheat straw 18580 
u/g 

168 
hours 

110.59 
u/g/h 

50  Solid-state 
fermentation 

Yang et 
al., 2006 

5 Aspergillus niger 
P 602 

Corncob 
Wheat Straw 

6320u/g 64 
hours 

98.75 
u/g/h 

55 5 Solid-state 
fermentation 

Gawande 
et al., 
1999 

6 Streptomyces 
albus & 
Streptomyces 
chromofuseus 

Rice straw pulp 4301 
u/g 

48 
hours 

89.60 
u/g/h 

28 7.2 Solid-state 
fermentation 

Rifaatet 
al., 2005 

8 Paenibacillus 
Campinasensis 
BL11 

Kraft pulp mill 2939 
u/g 

24-48 
hours 

61.22-
122.45 
u/g/h 

37 8 Solid-state 
fermentation 

Ko et al., 
2010 

9 Aspergillus niger Cottonseed oil 1761 
u/g 

36 
hours 

48.91 
u/g/h 

40 4.6 Solid state 
fermentation 

Wang et 
al.,  
2006 

10 Bacillus 
Stearothrmophil
uss SDX 

Wheat bran 3446 
U/g 

72 
hours 

47.86 
u/g/h 

37 7 Solid state 
fermentation 

Dhimanet 
al., 2008 

11 Aspergillus niger 
KK2 

Straw rice 5071u/g 120hours 42.25 
u/g/h 

50 4.8 Solid state 
fermentation 

Kalogeris
et al., 
1999 

12 Aspergillus 
awamori 

Sugarcane 
bagasse 

2500 
IU/g 

60 
hours 

41.66 
u/g/h 

30  Solid state 
fermentation 

Lemos et 
al., 2002 

13 Aspergillus niger 
N218 

Corncob 
Wheat Straw 

2989 
u/g 

72 
hours 

41.51 
u/g/h 

55 5 Solid state 
fermentation 

Gawande et 
al., 1999 

14 Thermoascuc 
aurantiacus 

Straw wheat 5465u/g 168 
hours 

32.52 
u/g/h 

50 5 Solid-State 
Fermentation 

Topakaset 
al., 2003 

15 Aspergillus 
foetidus 

Corncob 3065u/g 96hours 31.92 
u/g/h 

50 5.3 Solid-State 
Fermentation 

Wu et al., 
2005 

16 Bacillus 
circulans BL53 

Fibrous soybean 
residue 

3700 
u / g 

120 
hours 

30.83 
u/g/h 

60 7 Strong 
inhibitors: 
Hg, SDS 
Slight: Na, Cu, 
Fe, Zn, g, Ca, 
PHMB 
General :Ions 
react with 
sulphydryl 
group e.g. Hg+2

Heck et 
al., 2005 

17 Aspergillus niger 
CCUG33991 

wheat Straw & 
bran  

1465u/g 50 hours 29.30u/g /h 40 5 Solid state 
fermentation 

Shahi et 
al., 2011 

18 Aspergillus niger 
LPB 326 

Sugarcane 
bagasse +soybean 
meal 

1937 
IU/g 

96 hours 20.17 u/g/h 30  Solid state 
fermentation 

Macielet 
al., 2008 
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19 Bacillus SY30A Wheat bran 
 + (g/L):K2HPO4,  
1; NaCL, 3; 
MgSO4.7H2O, 
0.3) 

1157 
u/g 

72 
hours 

16.06 
u/g/h 

55 
(40-75) 

7 
(4-10) 

Solid state 
fermentation 

 

20 Aspergillus 
fumigates F-993 

White corn flour 720 
u/g 

48 
hours 

15 
u/g/h 

50 
(50-65) 

3.5 
(3.5-
6.5) 

Solid state 
fermentation 

Fadelet 
al., 2014 

21 Aspergillus 
fischeri Fxn 1 

Wheat Straw 1024 
u/g 

72 
hours 

14.22 
u/g/h 

50 6 Solid state 
fermentation 

Weber et 
al., 2002 

22 Thermoascuc 
aurantiacus 

Bagasse 2700u/g 240 
hours 

11.25 
u/g/h 

50 5 Solid-state 
fermentation 

Panagioto
uet al., 
2003 

23 Streptomyces 
sp.(strain 1b 
24D) 

Tomato pomace 1447 
u/ml 

240 
hours 

6.02 
u/ml/h 
**min** 

60 6.5 Submerge 
state 
fermentation 

Rawashde
het al., 
2005 

24 Bacillus subtilis 
NS7 

Nutrient broth 
suppl. With ylan, 
soybean meal, 
NaCL, and 
KH2PO4 

353 
u/ml 

72 
hours 

4.9 
u/ml/h 

37 
(37-70) 

6.5 
(5-9) 

Submerge 
state 
fermentation 

Bansalet 
al., 2012 

25 Bacillus 
mojavensis 

Oat husk + yeast 
extract, 5g/ oat 
spelt xylan, 5g/ 
peptone, 5g/ 
K2HPO4, 1g/ 
MgSO4.7H2O,1g 

249.308 
u/ml 

48 
hours 

4.36 
u/ml/h 

55 
(35-65) 

9 
(7-11) 

Submerge 
state 
fermentation 

Akhavan 
Sepahyet 
al., 2011 

26 Poliporus 
caliatus  
MRL7 

g/L (NH4)2SO4,   
1.4/MgSO4.7H2
O, 0.3/FeSO4, 
0.05/ZnSO4.7H2
O, 0.014 / 
COCl2,  0.02/ 
MnSO4, 0.016) 

292.8 
u/ml 

216 
hours 

1.35 
u/ml/h 

30 
(25-37) 

5 Submerge 
state 
fermentation 

Saleemet 
al., 2014 

27 Lentinus 
pigrinus MRL6 

g/L:(NH4)2SO4,  
1.4/ gSO4.7H2O, 
0.3/FeSO4, 0.05/ 
ZnSO4.7H2O, 
0.014 / COCl2, 
0.02/MnSO4, 
0.016) 

278.52 
u/ml 

216 
hours 

1.28 
u/ml/h 

30 
(25-37) 

5 Submerge 
state 
fermentation 

Saleem et 
al., 2014 

28 Phanerochaete 
sordid MRL3 

g/L :Proteous 
peptone, 0.5/ 
urea, 0.3/ 
KH2PO4, 0.2/ 
CaCL2,0.3/tween 
-80, 0.2) 

272.7 
u/ml 

216 
Hours 

1.25 
u/ml/h 

30 
(25-37) 

5 Submerge 
state 
fermentation 

Saleem et 
al., 2014 

29 Aspergillusniger 2.5% / 3%/ 3.5% 
concentration 
Sugarcane 
bagasse 

39.07 
u/ml 

72 
hours 

0.54 
u/ml/h 

37 
(25-32.5) 

5.5 
(5-6.5) 

Submerge 
state 
fermentation 

Robl et 
al., 2015 
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Substrate 

 

 Sterilizationby autoclaving at 121C for 15 min 

 

Culturein nutrient broth on a rotary shaker 

 

Inoculation in Erlenmeyer flaskat static conditions 

 

Enzymes extraction by 50mM glycin NaOH buffer (pH: 8.6) 

 

Filteringthrough a wet muslin cloth by squeezing 

 

Centrifugation at 8000g for 20 min 

 

Usage of supernatant for further analysis 

Figure - 1: Xylanase production Flowchart (modified from Shahi et al., 2011) 

 


