STUDY THE EFFECTS OF ECOLOGICAL CONDITIONS ON DESI AND FAYOUМИ CHICKEN TRAITS AT SINDH, PAKISTAN

Shahid Ali Jakhrami*, Javed Ahmed Ujan, Safdar Ali Uijjan

1Department of Zoology, Faculty of Natural Sciences, Shah Abdul Latif University Khairpur Mirs, Sindh, Pakistan

Corresponding author: shahid.jakhrami@salu.edu.pk

Article Received 28-09-2023, Article Revised 02-01-2024, Article Accepted 03-02-2024.

ABSTRACT

The present study evaluated the different body organ measurements and multiple phenotypic traits of Desi and Fayoumi chicken breeds under free range and intensive management conditions during 2021. The average values of phenotypic traits like neck length, body height, shank length, beak length, and wing span of Desi and Fayoumi males were measured as (20.4±1.9), (16.5±1.4), (43.4±3.2), (33.7±3.2), (12.5±0.82), (8.3±0.72), (3.6±0.21), (2.7±0.16) and wings span (23.7±1.6), (18.3±1.5) in intensive conditions respectively. While in the free range conditions, the neck length, body height, Shank length, beak length and wing span were recorded as (18.7±1.6), (16.4±1.3), (38.7±3.2), (34.6±3.1), (10.3±0.97), (9.4±0.94), (3.3±0.24), (2.7±0.18), (20.4±1.5), (18.5±1.4) in both chicken breeds. The different phenotype traits of chicken breeds as eye color, comb, plumage, feather, barbell and mumps, body height, Shank length, beak length, and wing span in intensive and free range conditions. It is concluded that Desi chickens were found with larger body parts and varied color. The present study suggests that further research should be carried on other characteristics to improve poultry quality and higher quantities in future endeavors.

Keywords: Animal husbandry, Desi chickens, Fayoumi chicken, Phenotype, Plumage

INTRODUCTION

The common chicken, also known as Gallus gallus domesticus, is predominantly derived from its predecessor, the red jungle fowl. However, genetic changes have been recorded compared to other Jungle species (Zheng et al., 2021). Each bird assumes a dominant role in a flock of chickens, creating a hierarchical structure. When a chicken faces danger from predators and experiences anxiety or health issues, it could exhibit fluffing up its feathers (Faruque et al., 2010). The rural population is comparatively more deficient in protein contents than the urban population. (Padhi, 2016). Chicken is a quicker, cheaper, and more efficient source of protein (Khawaja et al., 2013). The implementation of crossbreeding programs, which involve the enhancement of local breeds with appropriate exotic breeds, has been recognized as a notable approach with superior characteristics like growth rate, meat quality, and feed conversion (Fan et al., 2013). The speedy transmission of chicken benefits to the commercial mixed offspring is primarily attributed to genetic choice (Sarma et al., 2020). Desi Chickens rearing is easy and affordable in the local free management system, and Desi chicken products are much better than poultry chickens (Albokhadaim et al., 2012). It is imperative to undertake genetic improvement measures for Desi chicken and an approach to achieve this through crossbreeding of improved Desi chicken and imported exotic breeds, focusing on conserving desirable genes (Guo et al., 2022). The harsh environmental conditions in their feeding management, overcrowding, dust, litter, and pathogens are relaying harmful effects on valuable eco-friendly avifauna communities (Mangrio et al., 2020). The breeding Desi and Fayoumi chickens play a significant role in the food industry and valuable economy, but climatic changes make it increasingly challenging (Islam et al., 2004). The chicken industry has been widely scoped in Pakistan for the last three decades (Farooq & Shaker, 2004). The supply of commercial poultry yields in rural areas is much low as compared to urban areas (Anjum et al., 2012). Their survival ability and adequate environmental adaptation make chickens a successive indicator of poultry production in harsh ecological niches worldwide, including Pakistan (Bhatti et al., 2002). The native chicken breeds give a prior population for better diversification and production so for sufficient meat production and profitability the domestic chicken breeds can be enhanced genetically (Chitra, 2019). In many aspects of poultry products, some local traits perform much better in terms of egg weight and much better competence, like the weight of eggs, egg laying capacity, and rapid rate of expansion, which can be helpful for the economic effectiveness of rural...
poultries. Under rural conditions, the chances of survival for chickens become much more difficult due to the climatic changes, however, cross-breeds between different types of chickens are carried out under rigorous and improved environmental conditions (Kiani, 2022). Rapid trait production of different breeds may be crossed to increase in their population (Faruque et al., 2017), efficient sustainability in respect of harsh ecological conditions, and increase in meat production, which contributes a great part of income for local farmers (Fentie et al., 2013). The variation in weight gain, growth rate, and body organ size was analyzed between purebred chicken breeds. The possible outcomes of this research will help identify distinguish morphological characteristics of Desi and Fayoumi selected chicken breeds.

MATERIAL AND METHODS

A collection of 30 male and female chickens of Desi and Fayoumi species about 90 days old were collected from local people and hatcheries. The flocks of both species were brought from sample collection points and placed in animal husbandry, Department of Zoology, SALU, Khairpur. A deep litter system was maintained for the required period.

The Desi and Fayoumi chickens were reared in free-range conditions (FRC) and they were kept as in rural domesticated habitats to mate to increase their number. In these conditions, proper feeding and vaccinations were not introduced. Under intensive management conditions (IMC) both were reared separately in different bird cages in respect to their average population. The feeding system and water availability were arranged according to NRC and ISA guidelines. The whole chicken population was vaccinated according to the vaccination schedule given by regional vaccinating authorities (Islam and Dutta, 2010).

The body organ’s weight measurements were taken in grams through a digital electronic weight machine. The measurement of quantitative linear traits of the chickens was taken in cm by using a textile measuring tape. The whole body height was measured by using sawing tape. From the shank joint up to the digituspe dis length of the shank, and from the brooder end of the beak to its pointed end length of the beak were taken. Wingspan measurement was taken from the junction of touches of humor to the spine tip. Neck length was measured from the base of the head to the starting point of the thorax mandibles. Similarly different qualitative traits were selected for better production of traits. Mainly three colors of each parameter were focused. Before exposure to different ecological conditions, both chicken species were pre-examined comb color (white, black, red), eye color, (white, maroon, red), plumage (white, golden, grey), feather type (curled, smooth, normal), barbell color (red, black, pink), mumps color (orange, red, white), beak color (yellow, white, horned) were recorded on both species.

RESULTS

Different body organs measurement of Desi pure and F1 chicken breeds under IMC: The body height of the Desi male and female was measured as longer (43.4±3.2), (37.8±2.4) and with a neck larger length of (20.4±1.9), (15.3±1.4) respectively. The male shank length was (12.5±0.82), (10.3±0.68). The male was larger in length (3.6±0.2), (3.2±0.17) and the wingspan was measured larger (23.7±1.6) compared with the female (20.3±1.4). All these parameters were longer and larger in males than in females. After F1 generation of body height was measured as (38.1±3.4), (34.5±3.1) and neck length (19.3±1.6), (13.5±1.4). The shank length was (10.2±0.87), (8.7±0.65). The beak length of the male was noted (at 3.3±0.21) female (3.2±0.18) and male wingspan was measured (at 21.3±1.9) and female (18.4±1.6) cm, respectively. Generally, males were found to have higher and larger body organs than females in the F1 generation.

Fayoumi pure breeding and F1 generation under IMC: The chicken breeds were also brought from the sample collection point and reared in intensive conditions. After a period of 90 days, old rooster parent’s male body height was (33.7±3.2) and the female (32.4±2.8). The neck length was (16.5±1.4), (15.2±1.4) and the shank length as (8.3±0.72), (7.8±0.64). The beak length (2.7±0.16), (2.4±0.16) and wingspan measured (18.3±1.5), (17.4±1.6) respectively. After F1 generations of chickens, average body height was measured as (34.2±2.8), (33.7±2.7) and neck length was (17.4±1.6), (16.7±1.4). The shank length was measured as (8.6±0.72), (8.3±0.75). The beak length (2.9±0.17), (2.8±0.18), and male wingspan found to be larger (19.4±1.7) and female (18.7±1.6) cm, respectively. In the chicken species, the male was found to be higher and larger, as reported in Desi male chickens.

Table 1 Body organs measurements of chickens under IMC

<table>
<thead>
<tr>
<th>Habitat</th>
<th>Chicken breeds</th>
<th>Body Height (cm)</th>
<th>Neck length (cm)</th>
<th>Shank length (cm)</th>
<th>Beak length (cm)</th>
<th>Wingspan (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensive</td>
<td>Desi</td>
<td>Male</td>
<td>43.4±3.2</td>
<td>20.4±1.9</td>
<td>12.5±0.82</td>
<td>3.6±0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Female</td>
<td>37.8±2.4</td>
<td>15.3±1.4</td>
<td>10.3±0.68</td>
<td>3.2±0.17</td>
</tr>
<tr>
<td></td>
<td>Desi F1</td>
<td>Male</td>
<td>38.1±3.4</td>
<td>19.3±1.6</td>
<td>10.2±0.87</td>
<td>3.3±0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Female</td>
<td>34.5±3.1</td>
<td>13.5±1.4</td>
<td>8.7±0.65</td>
<td>3.2±0.18</td>
</tr>
<tr>
<td></td>
<td>Fayoumi</td>
<td>Male</td>
<td>33.7±2.2</td>
<td>16.5±1.4</td>
<td>8.3±0.72</td>
<td>2.7±0.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Female</td>
<td>32.4±2.8</td>
<td>15.2±1.4</td>
<td>7.8±0.64</td>
<td>2.4±0.16</td>
</tr>
</tbody>
</table>
The body organs measurement of Desi pure chicken breeds and F_1 generation under FRC: The quantitative morphological traits examination both male and female pullets chicken was kept in animal husbandry for up to 90 days in free range condition. The populations of the chickens were arranged at the (3:1) ratio for proper breeding and measurement of the male and female body organs were taken in cm. The body height of the male length was measured (at 38.7±3.2) for females (35.2±3.1), male rooster with a neck length (of 18.7±1.6) for females (15.3±1.2). The height length of the male shank was (10.3±0.97) female (8.7±0.92) and male beak length (3.3±0.24) female (3.1±0.25). The average length of the male wingspan measured (20.4±1.5) and the female (19.7±1.07) cm, respectively. After breeding of males and females from Desi chickens the F_1 generation was produced, and the male was found higher and healthier than the female. The body height of males was deliberately longer (38.5±3.3) than females (35.4±3.1), and male neck length was (18.2±1.5) and females (15.3±1.3). The male shank length measured (10.2±0.94) the female (8.6±0.87), and the length of the male beak noted (3.2±0.23) female (3.1±0.21).

The length of the male wingspan was (20.2±1.6) and the female (19.6±1.5) cm, respectively.

Fayoumi pure breeding and F_1 generation under FRC: The male and female pure chicken breeds were also brought and kept in free-range conditions for the purpose to examine phenotypic traits in both sexes. The average body height of 90 days old Fayoumi male was calculated (34.6±3.1) for females (32.5±2.8), and the male rooster with average neck length noted (16.4±1.3) female (12.7±1.2). The shank length of the male was measured (9.4±0.94) and the female (9.2±0.82) and the length of the male beak was (2.7±0.18) female (2.4±0.18). The male wingspan length was measured (18.5±1.4) and the female (18.2±1.4) cm, respectively. The average length of the male body height was noted (36.1±3.1) female (35.4±2.9), and the measurement of the male neck, including the rooster, was (17.8±1.4) female (13.2±1.2). The length of the male shank was counted (9.8±0.83) female (9.5±0.87), and the beak length of the male (2.8±0.16) female (2.3±0.16). The length of the male wingspan was (19.3±1.5) female (18.7±1.3) cm, respectively, as depicted in (Table- 2).

Table 2: Body organs measurements under FRC

<table>
<thead>
<tr>
<th>Habitat</th>
<th>Chicken breeds</th>
<th>Body Height (cm)</th>
<th>Neck length (cm)</th>
<th>Shank Length (cm)</th>
<th>Beak Length (cm)</th>
<th>Wing Span (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Range Condition</td>
<td>Desi Male</td>
<td>38.7±3.2</td>
<td>18.7±1.6</td>
<td>10.3±0.97</td>
<td>3.3±0.24</td>
<td>20.4±1.5</td>
</tr>
<tr>
<td></td>
<td>Desi Female</td>
<td>35.2±3.1</td>
<td>15.3±1.2</td>
<td>8.7±0.92</td>
<td>3.1±0.25</td>
<td>19.7±1.07</td>
</tr>
<tr>
<td></td>
<td>Desi F_1 Male</td>
<td>38.5±3.3</td>
<td>18.2±1.5</td>
<td>10.2±0.94</td>
<td>3.2±0.23</td>
<td>20.2±1.6</td>
</tr>
<tr>
<td></td>
<td>Desi F_1 Female</td>
<td>35.4±3.1</td>
<td>15.3±1.3</td>
<td>8.6±0.87</td>
<td>3.1±0.21</td>
<td>19.6±1.5</td>
</tr>
<tr>
<td></td>
<td>Fayoumi Male</td>
<td>34.6±3.1</td>
<td>16.4±1.3</td>
<td>9.4±0.94</td>
<td>2.7±0.18</td>
<td>18.5±1.4</td>
</tr>
<tr>
<td></td>
<td>Fayoumi Female</td>
<td>32.5±2.8</td>
<td>12.7±1.2</td>
<td>9.2±0.82</td>
<td>2.4±0.18</td>
<td>18.2±1.4</td>
</tr>
<tr>
<td></td>
<td>FayoumiF1 Male</td>
<td>36.1±3.1</td>
<td>17.8±1.4</td>
<td>9.8±0.83</td>
<td>2.8±0.16</td>
<td>19.3±1.5</td>
</tr>
<tr>
<td></td>
<td>FayoumiF1 Female</td>
<td>35.4±2.9</td>
<td>13.2±1.2</td>
<td>9.5±0.87</td>
<td>2.3±0.16</td>
<td>18.7±1.3</td>
</tr>
</tbody>
</table>

Qualitative morphogenetic traits % Desi pure and F_1 Chicken under IMC: Attention was given to examine the color % in pure breeds of male and female under intensive management conditions. Before matting of male and female the color patterns of different traits were counted in %. The comb color observed was white at (15.5%), black (36.2%) red (48.3%) found in male and female Desi chickens. The eye color white (45.8%) maroon (21.3%) black (32.9%) was reported. The color of plumage was found white (30.2%) golden (48.3%) grey (21.2%). The feather type was curly (20.7%) smooth (61.4%) normal (17.9%). The barbell colors were found red at (42.4%) black at (33.4%) and pink (24.2%). The mumps color was reported as orange at (27.3%) red (35.2%) white (37.5%) and the color of the beak was reported as yellow (26.8%) white (37.8%) horned (35.7%), respectively. After mating Desi breeds Figeneration was produced but variations were recorded in colour patterns %. The comb color was found in white at (21.5%) black (40.7%) red (37.8%) in both male and female Desi F_1 chickens. Eye color white was at (32.9%) maroon (32.6%) black (34.5%), color of plumage white at (26.8%) golden (42.1%) grey (31.5%). The type of feather was curly (27.3%) smooth (48.4%) normal (24.4%), barbell colors red (25.3%) black (47.4%) pink (27.3%). The color of mumps was found orange (35.2%) red (40.4%) white (24.4%), and beak colors yellow at (17.6%) white (38.3%) horned (44.1%), respectively.

Qualitative morphogenetic traits Fayoumi pure and F_1 Chicken under IMC: In intensive management conditions, the percentages of comb colors in both male and female chicken breeds were counted and reported as white at (35.8%) black (38.9%) red (25.3%) in male and female chickens.
Eye color was reported as white at (26.7%) maroon (31.8%) black (41.5%), plumage white at (47.3%) golden (28.6%) grey (24.1%). The feather curly types at (52.3%) smooth (24.3%) normal (23.4%), barbell colors red (33.7%) black (41.6%) pink (24.7%). The mumps color orange (27.6%) red (42.6%) white (29.8%), beak colors yellow (29.4%) white (34.5%) horned (36.1%), respectively. After mating breeds F1 generation was obtained but variations were recorded in male and female color pattern %. The comb color white was reported at (37.4%) black (24.3%) red (38.3%) F1 generation. Eye color white was found at (31.7%) maroon (42.6%) black (25.7%), plumage white at (27.8%) golden (35.6%) grey (36.6%). The feather curly type at (28.6%) smooth (36.7%) normal (34.7%), barbell colors red at (17.5%) black (28.3%) pink (54.2%). The mumps color orange at (43.4%) red (37.2%) white (19.4%), and beak colors yellow at (23.7%) white (31.2%) horned (45.1%), respectively, as shown in (Table- 3).

Table 3 Phenotype traits under IMC

<table>
<thead>
<tr>
<th>Phenotype Traits</th>
<th>Types</th>
<th>Desi</th>
<th>Desi F1</th>
<th>Fayoumi</th>
<th>Fayoumi F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comb colors (%)</td>
<td>White</td>
<td>15.5</td>
<td>21.5</td>
<td>35.8</td>
<td>37.4</td>
</tr>
<tr>
<td></td>
<td>Black</td>
<td>36.2</td>
<td>40.7</td>
<td>38.9</td>
<td>24.3</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>48.3</td>
<td>37.8</td>
<td>25.3</td>
<td>38.3</td>
</tr>
<tr>
<td>Eyes color (%)</td>
<td>White</td>
<td>45.8</td>
<td>32.9</td>
<td>26.7</td>
<td>31.7</td>
</tr>
<tr>
<td></td>
<td>Maroon</td>
<td>21.3</td>
<td>32.6</td>
<td>31.8</td>
<td>42.6</td>
</tr>
<tr>
<td></td>
<td>Black</td>
<td>32.9</td>
<td>34.5</td>
<td>41.5</td>
<td>25.7</td>
</tr>
<tr>
<td>Plumage color (%)</td>
<td>White</td>
<td>30.2</td>
<td>26.8</td>
<td>47.3</td>
<td>27.8</td>
</tr>
<tr>
<td></td>
<td>Golden</td>
<td>48.6</td>
<td>42.1</td>
<td>28.6</td>
<td>35.6</td>
</tr>
<tr>
<td></td>
<td>Grey</td>
<td>21.2</td>
<td>31.5</td>
<td>24.1</td>
<td>36.6</td>
</tr>
<tr>
<td>Feather type (%)</td>
<td>Curley</td>
<td>20.7</td>
<td>27.3</td>
<td>52.3</td>
<td>28.6</td>
</tr>
<tr>
<td></td>
<td>Smooth</td>
<td>61.4</td>
<td>48.4</td>
<td>24.3</td>
<td>36.7</td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td>17.9</td>
<td>24.3</td>
<td>23.4</td>
<td>34.7</td>
</tr>
<tr>
<td>Barbel color (%)</td>
<td>Red</td>
<td>42.4</td>
<td>25.3</td>
<td>33.7</td>
<td>17.5</td>
</tr>
<tr>
<td></td>
<td>Black</td>
<td>33.4</td>
<td>47.4</td>
<td>41.6</td>
<td>28.3</td>
</tr>
<tr>
<td></td>
<td>Pink</td>
<td>24.2</td>
<td>27.3</td>
<td>24.7</td>
<td>54.2</td>
</tr>
<tr>
<td>Mumps color (%)</td>
<td>Orange</td>
<td>27.3</td>
<td>35.2</td>
<td>27.6</td>
<td>43.4</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>35.2</td>
<td>40.4</td>
<td>42.6</td>
<td>37.2</td>
</tr>
<tr>
<td></td>
<td>White</td>
<td>37.5</td>
<td>24.4</td>
<td>29.8</td>
<td>19.4</td>
</tr>
<tr>
<td>Beak color (%)</td>
<td>Yellow</td>
<td>26.8</td>
<td>17.6</td>
<td>29.4</td>
<td>23.7</td>
</tr>
<tr>
<td></td>
<td>White</td>
<td>37.5</td>
<td>38.3</td>
<td>34.5</td>
<td>31.2</td>
</tr>
<tr>
<td></td>
<td>Horned</td>
<td>35.7</td>
<td>44.1</td>
<td>36.1</td>
<td>45.1</td>
</tr>
</tbody>
</table>

Qualitative morphogenetic traits Desi pure and F1 Chicken under FRC: The comb colors percentages in both male and female chicken breeds were measured in free-range conditions. The different comb color patterns were selected white at (23.6%), black (45.7%), and red (30.7%) in males and females. The eye color white at (37.2%), maroon (31.4%), black (31.4%), plumage white at (43.5%), golden (24.8%) and grey (31.7%). The feather curly type at (32.7%), smooth (36.1%) normal (31.2%), barbell color was found red (24.8%) black (32.5%) pink (42.7%), mumps color orange (42.3%) red (23.8%) white (33.9%), and beak colors yellow (37.6%) white (30.4%) horned (32.1%), respectively. After mating breeds F1 generation was obtained but color pattern (%) was found differently. The comb colors white was counted (27.6%) black (30.6%) red (41.8%) in both male and female F1 chickens. Eye color white (42.3%), maroon (28.6%), black (29.1%), plumage white (36.4%) golden (29.2%) and grey (34.4%). The feather type was curly (36.4%), smooth (19.5%), normal (44.1%), red (34.8%), black (27.6%) and pink (37.6%). The mumps color orange (40.2%), red (32.9%), white (24.9%) and beak colors yellow (37.5%) white (28.4%) horned (34.1%), respectively.

Qualitative morphogenetic traits Fayoumi pure and F1 chicken under FRC

The percentages of comb colors in chicken breeds were recorded in free-range conditions. Before breeding different comb color patterns (%) white were recorded (24.1%) black (36.5%), red (39.2%) in both male and female chickens. Eye color white (37.2%), maroon (27.6%), black (35.2%), plumage white (38.4%), golden (40.2%) and grey (21.4%). The feather curly type was (27.3%), smooth (35.4%), normal (37.3%), barbell colors red (26.1%), black (34.7%) and pink (39.2%). The mumps color orange (19.3%), red (27.5%), white (53.2%), and beak colors yellow (42.2%), white (31.7%) and horned (38.1%), respectively. After mating breeds F1 generation was obtained with variations in color pattern. The comb colors white were recorded at (23.8%) black (33.5%) red and (42.7%) in male and female chickens. Eye color white (34.7%), maroon (28.4%), black (36.9%), plumage white (33.5%), golden (30.2%), grey (36.3%). The feather type curl was found at (40.7%) smooth (36.2%) normal (23.1%), barbell color red (29.4%) black (32.6%) pink (37.9%). The mumps color orange (19.3%) red (39.4%) white (41.3%), and beak color yellow (30.7%) white (29.5%) horned (39.8%), respectively as shown in (Table- 4).
DISCUSSION
The present study was undertaken to evaluate the ecological effect on the phenotypic appearance of Desi and Fayoumi selected chicken breeds under free range and intensive management conditions. It was found that all parameters were found to greater in Desi breeds as compared to Fayoumi chickens when recorded during different stages of growth and these findings comes from reported by (Daikwo et al., 2011). They also reported domestic chickens are incapable of long-distance flight and can fly over fences or into trees in their natural habitat to escape any potential harm. Similarly, the Desi F1 generation was found healthier and more active compared to the Fayoumi F1 generation. Same work done by (Zhao et al., 2020), who documented the production capability of Desi chicken, which is used as an important and cheap supply of required protein diet in rural areas. Both species of chickens can serve in free range and intensive conditions and produce sufficiently their progeny. (Mangrio et al., 2017) documented that generally agro-friendly insectivorous birds are social creatures and often form groups, known as flocks, and egg hatching and nurturing offspring involves a communal approach. (Malago and Baitilwake, 2009) suggested birds including chicken species in their natural habitat, frequently use their claws to dig into the ground to forage for nuts, insects, and occasionally prey as sizable as lizards, minor snakes, or juvenile mice. (Benyi et al., 2015) discussed that indigenous chickens possess an innate tendency towards scavenging exhibit higher resistance to various diseases, less susceptible to predation with greater adaptability to endure unfavorable nutritional and environmental conditions. In the present work, attention was given to the phenotypic color pattern % of Desi male and female breeds. (Chowdhury et al., 2006), designated that chickens could be categorized as a distinct breed or population, despite displaying variations in size, shape, color, and productivity attributable to their genetic makeup. The color % in F1 of desi chickens found with variation as discussed (Khawaja et al., 2012), the chicken typically rooster’s lengthy and glossy tails, pointed feathers on their necks and backs, hackles, and saddles, and appearance is eye-catching. The pure breed of fayoumi male and female reported color variation. (Sarma et al., 2018) reported the Rhode Island red breeds, Fayomi and Desi chickens were reared, and maximum weight was reported in Rhode Island Red breeds followed by Desi and Fayomi. The F1 generation of the Fayoumi was reported with the color variant as discussed (Hesham et al., 2018), the Fayoumi chickens are quick-maturing breeds, at the age of five to six weeks, roosters begin making their distinctive crowing sounds, and females commence laying eggs as early as 4 and a half to 5 months having the notable capacity for egg production.

CONCLUSION
This research study concluded that the Desi and Fayomi chickens can serve best in both free range and intensive conditions. The male and female Desi chickens were much darker in their % color patterns compared to Fayomi male and female chickens. To increase animal protein production and boost the income of unemployed farmers, it is imperative to implement a selection process that will lead to improvement. The present study has great importance.

Table 4 Phenotype traits % under free range condition

Habitat	Free Range Condition				
Phenotype Traits	Types	Desi	Desi F1	Fayoumi	Fayoumi F1
Comb colors (%)	White	23.6	27.6	24.1	23.8
	Black	45.7	30.6	36.7	33.5
	Red	30.7	41.8	39.2	42.7
Eyes color (%)	White	37.2	42.3	37.2	34.7
	Maroon	31.4	28.6	27.6	28.4
	Black	31.4	29.1	35.2	36.9
Plumage color (%)	White	43.5	36.4	38.4	33.5
	Golden	24.8	29.2	40.2	30.2
	Grey	31.7	34.4	21.4	36.3
Feather type (%)	Curley	32.7	36.4	27.3	40.7
	Smooth	36.1	19.5	35.4	36.2
	Normal	31.2	44.1	37.3	23.1
Barbel color (%)	Red	24.8	34.8	26.1	29.4
	Black	32.5	27.6	34.7	32.6
	Pink	42.7	37.6	39.2	37.9
Mumps color (%)	Orange	42.3	40.2	19.3	19.3
	Red	23.8	32.9	27.5	39.4
	White	33.9	24.9	53.2	41.3
Beak colors (%)	Yellow	37.6	37.5	24.2	30.7
	White	30.4	28.4	31.7	29.5
	Horned	32.1	34.1	38.1	39.8
in the meat and meat products field in local areas of Sindh.

IMPACT STATEMENT

The invention of a new technique has the potential to benefit farmers who are currently facing a shortage of resources in our nation. An effective plan is needed to harness the potential of indigenous and Fayoumi breeds in taking advantage of novel resources to balance the demand and supply of animal protein.

AVAILABILITY OF DATA AND MATERIALS

The corresponding author declares that due to the ethical restriction available at the request regarding their findings of this research manuscript.

ACKNOWLEDGEMENTS

I am highly thankful to the Department of Zoology, Shah Abdul Latif University, Khairpur, where chickens were reared in the Animal Husbandry and Genetics Laboratory for the phenotypic study of the chickens. Again, I thank the research guide and co-guide for their kind support in conducting viable research.

REFERENCES

