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ABSTRACT 

Proteomics is a multidisciplinary research area with proteins as the key element. One of the main constituents of 

the architecture of the human body is a transmembrane protein with an amino acid as its individual unit at the micro-

level. These amino acid sequences yield structural information by unfolding the orientation in 3D space and are 

critical for the underlying diseases. Moreover, with the rise of the number of proteins in data banks, machine 

learning algorithms are a savior to reveal this information in no time. We implemented a Support Vector Machine 

(SVM) on the Protein Data Bank of Transmembrane protein (PDBTM) to harvest the secondary structure of the 

protein as alpha-helices. The key feature of our approach is that the graphical user interface shows the intensity of 

the helices in a protein by the amount of spirals as a percentage. Higher values reveal more spirals at the secondary 

structure level and vice versa. 

Keywords: Transmembrane Protein (TMP), Support vector machine (SVM), Secondary Structure, Alpha Helices 

(AH). 

INTRODUCTION  

Protein is an imperative biomolecule in humans 

responsible for maintaining vital functionalities 

including enzymatic activities, hormonal changes, 

transport mechanisms, and providing defense against 

diseases (Murray et al., 2017). The main subunit of this 

biomolecule is an amino acid. More than 300 amino 

acids have been discovered, and only 20 amino acids 

participate in protein synthesis (Akram et al., 2011). 

These amino acids while forming protein, are folded 

because of the various intermolecular and 

intramolecular forces to yield a complex 3-D 

orientation. The simplest structure of a protein is a 

linear sequence of amino acids named primary 

structure. This linear chain is assembled via hydrogen 

bonding and formed as alpha helices or beta-sheets and 

is termed as secondary structure. This secondary 

structure tends to form a tertiary structure which when 

again folded, gives rise to the most complex level of 

the organization referred to as the quaternary structure 

with a prosthetic group. Among these different 

structures, the most functional is the secondary 

structure that leads to identifying the further complex 

structural level of protein (Murray et al., 2017) The 

membrane protein is a type of protein that comprises 

30% of sequenced genes. These membrane proteins are 

present at the cell membrane or at the membrane of the 

organelles of the cell of human beings. Since they are 

located at the membrane, they specifically act as a 

gateway for the transmission of signals and materials 

(Landreh & Robinson, 2014), (Congreve & Marshall, 

2010). 

Membrane proteins are classified mainly into two 

types:  

• Transmembrane Alpha helices 

• Transmembrane beta-barrel 

Figure 1. Depicts the structural orientation of the 

secondary structure of a protein 
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Figure 1. Alpha Helical & Beta sheet structure (retrieved from https://www.chegg.com/flashcards/cell-biology-final-

f3d5df4f-e599-4f81-882a-c7fe8ceb24d7/deck) 

Transmembrane alpha-helices are the most 

occurring secondary structure-based membrane 

proteins (Heijne, 1996). These proteins are involved in 

an extensive range of important biological processes 

including the transport of membrane-impermeable 

molecules and cell-cell communication. Experimental 

prediction of protein structures and functions in 

laboratories is quite difficult. Moreover, these methods 

can predict a few proteins at a given time and cannot 

handle thousands of proteins at a time. Thus, 

computational tools are designed to counteract these 

drawbacks (Cai et al., 2006). The structural information 

of a protein is critical as structure directly relates to the 

function of a specific protein. The slight difference in 

the orientation of protein may lead to the misfolding of 

the protein chain which ultimately leads to mutation. 

Therefore, the predictive machine learning algorithms 

reveals the misfolding/mutation in a protein 

chain which help to determine related disorder, 

dysfunctions, and diseases (Congreve & Marshall, 

2010), (Conn et al., 2007). Accessing the annotation, 

topology, and orientation of any protein could be 

possible through structural information and knowledge 

of structure can be helpful in relation to drug designing, 

genomic chip designing as well as artificial cell 

formation. It can be helpful for clinicians to 

diagnose the causes of diseases related to protein such 

as mutations, metabolic diseases, and neuro-generative 

diseases, and can also determine causes of protein 

degradation and instability (Tsai et al., 2000). 

Machine learning techniques make use of amino 

acid sequences of a protein as an input to yield the 

secondary structure information. It is an intermediate 

but useful step for the prediction of three-dimensional 

(3D) protein as well as the complex 3-D structure as 

still it cannot be accurately revealed directly from the 

sequences (Koch & Schäfer, 2018). 

The most critical structural level where the folding 

of a linear chain of amino acids occurs is the secondary 

structure. The main element behind this twisting is the 

involvement of intermolecular forces which defines the 

basic orientation of the protein. This orientation yields 

not only information regarding the quaternary structure 

but also about the functionality. There are various 

experimental methods that affirm the secondary 

structure of proteins including X-ray crystallography, 

nuclear magnetic resonance (NMR) (Dokholyan, 2020) 

, and electron microscopy (Apweiler, 2001). However, 

each method has its constraints as they are unable to 

identify the transient or stable complexes in a cell 

mostly. Another drawback is that they need a huge and 

expensive experimental setup, which may take months 

or even years for the results of the procedure. Due to 

these limitations of experimental approaches for 

secondary structure prediction of protein, 

computational approaches are used. The first 

computational approach used for forecasting the 

secondary structure of globular proteins is the Chou-

Fasman algorithm. This method is based on assigning a 

value to each amino acid on their recurrence in the 

alpha-helical strand or beta-sheet into six different 

groups. The main drawback of this approach is the low 

accuracy and unreliable parameters which leads to 

over-prediction. With this approach, the secondary 

structure of the protein can be predicted with 50-60% 

accuracy (Kubota et al., 2014).  

Another approach relating to the Garnier–

Osguthorpe–Robson (GOR) Algorithm has also been 

employed for the prediction of the secondary structure 

of a protein. The GOR approach considers not only the 

probability of each amino acid for the specific 

secondary structure but also the conditional probability 

of each monomer of the protein chain. This algorithm 

yields an accuracy of 65% because it frequently 
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predicts the beta-sheets as loops or chaotic regions 

(singh et al., 2013). A recent development is the use of 

the PSI-BLAST, a program used to widen the profile 

by including more evolutionarily related matches and it 

results in increased accuracy (Tenreiro Machado et al., 

2013). 

The Nearest Neighbor Method works on the 

principle of neighboring values in the vicinity. In 

proteomics, it uses the sequence similarity of known 

proteins of the secondary structure of the target protein 

through a sliding window. It makes use of the available 

various similarity matches of known structures. The 

two well-known servers based on the nearest neighbor 

are NNSSP and Praetor. These two approaches make 

use of the sequence alignment approach, however, they 

are distinct as one approach utilizes pair-wise 

alignment and the other adopted multiple sequence 

alignments (Conn et al., 2007), (Rask-Andersen et al., 

2011). 

The Hidden Markov Model is a statistical 

approach in order to forecasting the secondary structure 

of the protein. It makes use of small segments of 

similar sequences of amino acids with known 

structures to create multiple sequence alignment 

profiles to generate the hidden Markov Models (HMM) 

which ultimately infer the structure of the unknown 

protein (Shukla et al., 2012). Based on this HMM 

approach, Bystroff et al. developed a program 

HMMSTR exhibiting an accuracy of 74.3% (Das et al., 

2015). 

Using NNs, the methodology (Barve et al., 2013) 

adopted three-layer feed-forward NNs with the 

inclusion of evolutionary information using multiple 

sequence alignments. And it showed outstanding 

performance of Q3=70.8% on 126 non-homologous 

data sets (RS126). Besides this approach, there are 

many other approaches using different NN 

architectures. 

A recent SVM-based approach makes use of 

frequency profiles with evolutionary information as an 

encoding scheme for the structural analysis of proteins 

at the secondary level of organization. This approach is 

applied to the CB513 dataset with the accuracy of 

Q3=73.5 (Cong et al., 2013). 

Another SVM based inherited two layers of SVM 

with a weighted cost function for balanced training and 

it presented a prediction accuracy of Q3=71.5 on the 

C396 set. Also, there was another scheme that 

incorporated PSI-BLAST Position Specific Scoring 

Matrix (PSSM) profiles as an input vector and that 

applied new tertiary classifiers. This scheme, which is 

called SVM psi, showed the prediction accuracy of 

Q3=76.6 on the CB513 data set (Landreh & Robinson, 

2014). 

A study was carried out for the prediction of 

alpha-helical transmembrane proteins with the aid of a 

deep transfer learning technique. Data from two protein 

classes including alpha-helical polytopic proteins and 

biotopic proteins were acquired from a dataset referred 

to as orientations of proteins in membranes. The results 

of the study exhibited that the proposed technique 

exhibited good classification accuracy (Wang et al., 

2022). 

In a similar study, multiscale deep learning fusion 

was executed for the prediction of alpha-helical 

transmembrane proteins. The technique involved two 

modules. The first module includes a prediction of the 

transmembrane helix through tail modeling. The 

second module comprises orientation modeling 

achieved by the SVM classifier. The results of the 

study demonstrated a reliable classification of 

transmembrane proteins (Feng et al., 2020). 

Prediction of interaction sites in alpha-helical 

transmembrane proteins was carried out utilizing the 

deep learning method. A stacked ensemble technique 

was fused with deep learning residual neural networks 

and the proposed framework was able to achieve an 

accuracy of 68.9% (Sun & Frishman, 2021). 

In a similar study, structural features of transmembrane 

proteins were classified. Data was acquired from 

orientations of proteins in the membranes database. A 

deep learning algorithm consisting of neural networks 

was applied in addition to a random forest machine 

learning classifier. The results of the study showed that 

the proposed prediction technique was reliable with an 

accuracy of 70% being achieved (Hönigschmid et al., 

2020). 

From the literature, it is evident that the best 

computational technique for analyzing protein is either 

Hidden Markov Model or SVM in terms of accuracy. 

Moreover, there are very few methods for inferring the 

secondary structure of the transmembrane protein but 

our proposed method is unique as it is also revealing 

the number of alpha-helices present in a 

transmembrane protein through a Graphical User 

Interface. 

MATERIALS AND METHODS 

Dataset: For transmembrane proteins, we retrieved 

data from the Protein Data Bank of Transmembrane 

Protein database (http://pdbtm.enzim.hu) which is the 

first extensive database for transmembrane proteins. 

This database is unceasingly updated on regular basis 

by the TMDET algorithm. From PDBTM, we extracted 

the alpha-helical proteins only, which were around 

3729 proteins. The file from PDBTM contains the 

amino acid sequence only in FASTA Format, with no 

information to which organism these proteins belong. 

Figure 2 demonstrates the official website of PDBTM. 
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Figure 2. PDBTM, the protein data base 

In order to extract this information about each 

protein, RCSB PDB (https://www.rcsb.org/) is used. 

Every protein is sorted and assigned to the species to 

which it belongs. These proteins belong to various 

organisms including Bos taurus, Thermosynechococcus 

vulcanus, Squalus acanthias,Halobacterium salinarum, 

human beings, and many other organisms. Figure 3 

depicts the web page of RCBS PDB.  

 
Figure 3. Web page of RCBS PDB
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Further scrutinizing of the data is done to obtain the human proteins only. The total number of human proteins obtained/downloaded is 419 which is shown in 

figure no.4. 

 

 
Figure 4. Alpha helical Transmembrane protein of Humans (Homo sapiens) 

Methodology:  The methodology involves the extraction of alpha-helical 
transmembrane proteins from the database PDBTM Then, feature extraction and 
selection were done and this information is transferred in a Microsoft EXCEL file 
which is then transferred to python software (Py-Charm). Python imports an excel file 

with the extension of CSV and also some directories to execute with processing such 
as the implementation of classifiers over dataset for designing the model. After 
processing, query protein was given to the model and obtains the desired outcome in 
form of a percentage. Figure 5 demonstrates the block diagram of the methodology

.
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Figure 5. Block diagram of the methodology 

Support Vector Machine: SVM is one of the widely 

used machine-learning algorithms for classification. It is 

a supervised machine learning approach that makes use 

of known inputs and outputs for training purposes. Once 

trained, now the algorithm can predict new inputs based 

on initial training and can differentiate between two 

groups. Before implementing SVM on human proteins, 

feature extraction is done. The extracted features are 

based on the amino acid composition of a protein and 

their sequential order as the number of amino acids 

varies in every transmembrane protein, we need to 

equalize the length of the protein. For this purpose, 

string balancing is done on the proteins. 

Training and Testing: The database was divided into 
two chunks, one for training and the other for testing 
purposes. Training of the database was done by a 
support vector machine. After training, performance 
was evaluated by testing the dataset, the amino acid 
sequences were again given as input. Figure 6 depicts 
the flow diagram of the procedure. 

 

 
Figure 6. Flow diagram of the procedure 

If the model is accurately trained, prediction in form of 

sequence similarity will be higher than 50% 

manifesting the presence of alpha-helical 

transmembrane human proteins. 
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RESULTS AND DISCUSSION 

The results are displayed through Graphical User 

Interface (GUI), where protein sequence will be given 

as an input, processed through the classifier and the 

percentage of alpha-helices is shown on the screen. 

Figure 7 and Figure 8 show the outputs for the alpha-

helices in human proteins.  

INPUT SEQUENCE 

EKTNLEIIILVGTAVIAMFFWLLLVIILRTVKRAN

GG 

A. Identity molecule =Vascular endothelial growth 

factor receptor 2 

B. Protein name =VEGFR2 vascular endothelial 

growth factor receptor 2 transmembrane dimer 

C. Organism = homo sapiens 

OUTPUT 

 

Figure 7. Output of first protein  

Fig 7 reveals that the human protein with amino acid 

sequence 

EKTNLEIIILVGTAVIAMFFWLLLVIILRTVKRAN

GG contains 67% of alpha helices in its structural 

framework. It indicates that the given sequence is an 

alpha-helical protein found in human beings. 

INPUT SEQUENCE: 

VQLAHHFSEPEITLIIFGVMAGVIGTILLISYGIRRL

IKK 

A. Identity molecule = Glycophorin A 

B. Protein name = Glycophorin A (GpA) 

transmembrane-domain dimer 

C. Organism = homo sapiens 

OUTPUT 

 

Figure 8. Output of second protein 
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Fig 8 depicts that the human protein with amino acid 

sequence 

VQLAHHFSEPEITLIIFGVMAGVIGTILLISYGIRRL

IKK is an alpha-helical protein with 68% helices in its 

structural framework.  

CONCLUSION 

The main focus of this endeavor is to implement 

SVM uniquely in such a way that it can predict the 

amount of alpha-helices in human proteins. Unlike the 

traditional machine learning approaches, which only 

mention the accuracy of the predictor, we designed a 

graphical user interface (GUI) not only for those 

human proteins which are involved in training but also 

for new transmembane proteins. 

  For this purpose, we trained SVM by entering each 

and every protein sequence, so to memorize the similar 

pattern of helical sequences, which is then tested by 

entering the amino acid sequence in the graphical user 

interface (GUI). The percentage executed on the GUI 

depicts the folding level at the secondary level of the 

structure. More value in terms of percentage reveals the 

presence of more alpha-helices as compared to other 

forms i.e. beta sheets and hence, more spiral 

structure. Hence, a transmembrane protein with 88% 

on GUI shows the greater number of helical in its 

secondary structure as compare to that transmembrane 

protein for which output screen shows a value of 70%. 
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