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ABSTRACT 
This work gives a concise overview of the role that distributed model predictive control has el the development of the 
advanced wind turbine control algorithms. The benefits of the model predictive control compared to conventional 
controllers convoluted in wind turbine control are defined. Wind turbine model predictive active power controller based 
on identified piecewise affine discrete-time state space wind turbine model is designed. The designed D-MPC controller 
showed better performance. A wind farm with ten wind turbines was used as the test system. Research were attend and 
evaluated, which include the operation of the wind farm with the D-MPC under low and high wind conditions, and the 
dynamic achieved with a wind turbine out of service.  With the fast gradient method, the convergence rate of the D-MPC 
has been significantly improved, which decrease the iteration numbers. Appropriately, the communication burden is 
reduced.  
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1. INTRODUCTION 

    Wind energy has become fastest growing renewable 

source considering the installed capacity per year [1]. 

Unlike the other alternative sources, wind power indus-

try has reached mature commercial phase. Never-the 

less, wind turbines are continuously increasing size and 

nominal power capacity to achieve more compete-tive 

cost of energy compared to conventional sources. 

Among the large wind turbines, variable-speed and 

pitch controlled turbines are predominant.  

    The efficiency that they achieve depends mostly on 

the control algorithm used for turbine operation. Besi-

des, to make the turbine profitable, controller must take 

care for structural loads mitigation. Only considering 

both fore mentioned control objectives can lead to 

optimal lifetime and production combination that will 

lead to maximal profit. It is high intermittence of wind 

power and high nonlinearity of multiple input-multiple 

output (MIMO) wind turbine dynamics that make this 

task a challenge. Most of the research on the develop-

ment of wind turbine controllers is mainly based on 

linear controllers (e.g. [2, 3]). The main drawback they 

have in the wind turbine control is impossibility to con-

sider system constraints. Besides advanced control 

algorithms which have already been developed, interes-

ting role in the future of large wind turbines control 

will for sure be reserved for model predictive control 

(MPC) [4]. Good mathematical wind turbine model 

together with measuring instruments of upcoming wind 

or short-term meteorological service data can be used 

to reduce the loads of a wind turbine along with maint-

aining high electricity production demands. MPC inhe-

rently handles multiple objective MIMO systems what 

makes it particularly interesting for the wind tur-bine 

control. 

2.D-MPC wind Farm Control Strategy 

The hierarchical structure of the D-MPC centralized 

power control of a wind farm is illustrated in Fig. 1. 

Like the hierarchical structure proposed in, the high-

level control operates at a slow time scale. Specifically, 

the wind farm power reference  is generated based 

on the requirements from the system operator and the  

 

available wind farm power. With the wind field model 

and measurement data, the mean wind speed of a cert-

ain period (several minutes) can be estimated. Several 

approaches have been developed to distribute the mean 

power references to individual wind turbines ( , 

,…. ,) with  =  

which is reviewed. The proportional distribution algori-

thm proposed is adopted to distribute the mean power 

references to individual wind turbines, which are acco-

rding to the available power of each turbine. Conven-

tionally, these mean power reference signals are direc-

tly assigned to the individual wind turbines without 

considering the effect of turbulence. In this paper, these 

references are modified by the D-MPC controller 

locally equipped at each wind turbine, which can be 

considered as the low-level wind farm control for short 

time-scale dynamics. It can reduce the wind turbine 

load by adjusting the power reference to each turbine. 

 
Fig 2.1 Centralized Wind Form Power Control 

 

A centralized approach to the optimization of large 

wind farm operation is an extremely complex control 

problem. Namely, the system in scope is best described 

as a coupled, constrained multiple-input multiple-out-

put model whose order grows very fast with the num-

ber of wind turbines in the wind farm. The wind turb-

ine and especially the wind field are highly nonlinear 

systems. Furthermore, the system is subjected to large 
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number of disturbances due to random nature of wind, 

and/or possible wind turbine malfunctions that may 

prevent or restrict its operation. Finally, wind farm 

model inherently comprises processes acting on very 

different time scales: the mechanical part of a typical 

megawatt scale wind turbine with local speed and 

power controller has dominant dynamics in the time 

scale of 1 second, while the typical propagation time of 

wind between two rows of wind turbines can be 

significantly longer than 10 seconds. 

Using the clustering-based piece-wise affine (PWA) 

wind turbine model developed and the measurement 

feedback the D-MPC can determine in which operation 

region the wind turbine. The corresponding prediction 

model and the matrix for local optimization can be 

formulated. With the communication with the central 

unit (see Fig. 2), the iterations are executed to meet the 

global constraints. Different from the central unit does 

not have much computation. It is used to update the 

dual variables by collecting the matrices from wind 

turbines which are computed offline.  Then, the modi-

fied power references ( , ,…. ,) with 

 =  

are assigned to the individual wind turbine controller. 

The reference signals for the converters and blade pitch 

controller of each wind turbine are generated according 

to . 

 
Fig 2 Block diagram wind farm active power control 

 

2.1 Mathematical Modeling of Wind Turbine 

Aerodinamical properties of wind turbine blades allow 

converting airflow energy into the rotational energy of 

the rotor which is then converted to the electrical 

energy. Power stored in air cylinder with the radius R, 

the density ρ and the wind velocity  is given with 

      Pw = 1/ 2 R 2πρ                           (1) 

The amount of wind power that is extracted by a wind 

turbine depends on the power coefficient Cp 

Pwt = 1/ 2 R 2πρ Cp(λ, β)                  (2)         

where β refers to the blade pitch angle and λ is a 

dimensionless quantity known as the tip speed ratio 

λ=                            (3) where ω 

denotes the rotational speed of the rotor and R is the 

rotor radius. 

To obtain a dynamical model of the wind turbine, 

aerodynamic forces acting on wind turbine blades have 

to be modeled. Precise mathematical model which 

describes forming of the lift and drag forces along the 

blades due to the airflow through the swept area of the 

rotor is based on implicit equations [5]. For that reason, 

it is impractical for the controller design. The model 

used in this work is a simplified nonlinear model of the 

wind turbine dynamics. It describes all significant phy-

sical phenomenas experienced by the wind turbine with 

rated power 1 [MW]. Therefore, it is a good starting 

point for the design of a controller with objectives to 

optimize power production and reduce fatigue of the 

wind turbine’s tower. The assumptions of the model 

are: (i) rigid blades, (ii) the wind tower has fore-aft 

deflections that can be well modeled using first mode, 

(iii) the wind is uniform over the wind field. The 

dynamics of the rotor is given with 

𝝎= Ma(β,ω, -                  (5) 

where Ma holds for the aerodynamic torque and  is 

the generator torque. Fore-aft deflections xt of the tow-

er top are modeled with the second order diferential 

equation 

 +  +  =  (  )   (6) 

where Mt denotes the modal mass, is the damping 

coefficient and Ct the spring constant of the wind turb-

ine tower.  is the effective thrust force experienced 

by the rotor? Blade pitching servo system can be well 

modeled with 

+             (7) 

where   is the time constant of the system and βref 

the pitch angle reference? 

2.2 D-MPC through Dual Decomposition with Fast 

Dual Gradient Method 

Wind Turbine Linearization for D-MPC 

The discrete model of a single wind turbine developed 

in Part I is used as the prediction model. It is a PWA 

model whose operation regions are determined accord-

ing to the current state and input variables. Accordin-

gly, the computation task of the prediction model has 

been done offline and stored based on these regions. 

Since these states can be directly measured and wind 

speed can be well estimated, the prediction model can 

be updated by searching the current operation region 

for each time step. It should be noticed that wind speed 

in this paper refers to “effective wind speed” which is 

used to describe the wind speed affecting the entire 

rotor. The estimation methods have been nicely revie-

wed and compared. For the D-MPC design in this 

paper, it is necessary to obtain a discrete linear time-

invariant (LTI) wind turbine model. Therefore, it is 

assumed that the obtained prediction model is kept 

invariant during the prediction horizon, expressed by 
 

x (k+1) = x(k) +  u(k) +  d(k) +  
 

Y(k) = x(k) + u(k) + d(k) +  
 

where x, u, d, and y indicate state, input, disturbance, 

and output vectors, respectively, x = [ωr, ωf, θ], u = 

, d =   , y = [Ts, Ft], θ is the pitch angle, ωr 
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and ωf are the rotor speed and the filtered generator 

speed, respectively, Ft is the thrust force, Ts is the shaft 

torque, PWT ref is reference power derived from the 

wind farm, and  represents the wind speed, which  is 

regarded as a disturbance. The formulation of , 

 and  depending on the sampling 

time is explained in Part I. 
 

2.3 MPC Problem Formulation 
 

The cost function of the D-MPC design takes into 

account both the tracking performance of the wind 

farm power reference and the minimization of the wind 

turbine load. During the wind farm operation, it is 

assumed that the mean wind speed  of a certain per-

iod (10 min) can be estimated and an initial distribution 

of individual wind turbine power references for this 

period is known. Therefore, the mean power 

Reference for the ith wind turbine can be 

calculated by a proportional algorithm according to the 

available power 
 

   ,  with  =1 
 

where   is the number of wind turbine in the wind 

farm, is the power reference for the wind farm, 

and    indicates the distribution factor for the ith 

wind turbine. Accordingly, other steady-state variables, 

e.g., the shaft torque , can be determined. 

The prediction horizon is chosen as np and k indicates 

the prediction index.  The MPC problem at time t can 

be formulated as follows 
 

   + 

  +  

  
 

Subjected to 
 

 (k+1) = (k) +   (k) +   (k) +  

      I ], k  [0, …., -1] 
 

 (k) = (k) +  (k) +  (k) +  

        I  ], k -1] 
 

 (0) =  

   ,    
 

where  ,  , and  are the weighting factors. The 

second and third terms in the cost function are used to 

penalize the deviation of the shaft torque from the 

steady state and the derivative of the thrust force to 

reduce the wind turbine load;  and  are the local 

state and control input constraint sets, respectively. As 

the optimization variable u, the first values (ui(0), i ∈ 

[1, . . . , Nt]) are taken as the control inputs for each 

turbine. The control inputs are coupled whose sum 

equals the power reference of the wind farm . 

2.4Parallel Generalized Fast Dual Gradient Method 

The MPC problem can be reformulated as a standard 

quadratic programming (QP) problem, which is rewrit-

ten in the following format with Hessian matrix  ∈ 

Rnp × np (positive definite) and coefficient vector  ∈ 

Rnp×1. and  can be calculated according to the 

equality constraints and prediction horizon . 

Min ( =     

Subjected to  

Gu =b         
 

In this case, the coupling of the control inputs can be 

equivalently rewritten as the equality constraint. Since 

only the 

First  control input is coupled with all the others, 

 G, and b can be obtained. 
 

G= [ ,……, ], =[1,0,…..,0],  

b=  

3.Properties of Dual Problem 

In this part, the key properties required to apply fast 

dual gradient methods are described. Obviously, the 

functions Φ and Φi are strongly convex with matrix H 

and . H is defined as H = blkdiag ( , . . . ,  ). 

By introducing the dual variables λ, the primal problem 

is transformed into the following Lagrange dual 

problem 

{Φ(u)+λ( -b)} = {  

( ) +( λ( )  - λ  

With the definition of conjugate functions for Φ and Φi 
 

 (-  λ)=  (-λ  –  

 (-  λ)= (-λ  –  

The dual problem above can be rewritten as 

 { -  (-  λ) – λb} 

=   

For simplicity, the following dual problem equations 

are defined 

 (  -  (-  λ) – λ  

d (  = -  (-  λ) – λb d=  

The following property for the dual problem can be 

derived according, which is the theoretical foundation 

for the distribution optimization algorithm.  

Property 1: If the primal function Φ and its local 

function Φi are strongly convex with matrices H and 

Hi, we have the conclusion that the dual function d and 

its local function Φi are concave, differentiable, and 

satisfy 
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d( )  d( ) + ( -  

d( ) d( ) + ( -  

Compared with what has been presented in the 

literature, this property provides a tighter quadratic 

lower bound to the dual function. It can be further 

proved that the obtained bound is the best obtained 

bound. Therefore, more accurate approximation of the 

dual function can be derived, which improves the 

convergence rate. In the next part, a generalized para-

llel optimization algorithm for D-MPC is described. 

3.1 Distributed optimization Algorithm 

The parallel fast dual gradient method is implemented 

below for the wind farm control. Dual variables λ, η, 

and ϕ are introduced. Normally, the iteration stops if 

the stopping criterion is met. In this paper, a fixed 

number of iteration kmax is selected as the stopping 

criterion to limit the online computation time. 

Algorithm for Parallel fast dual gradient method for 

wind farm control 

Require: Initial guesses λ[1] = η[0], ϕ[1] = 1. 

For k = 1, . . . , , do 

Step 1: Send λ[k] to all wind turbines j ∈ {1, ...,  } 

through communication (Central Unit ⇒D-MPC). 

Step 2: Update and solve the local optimization with 

augmented cost function in individual D-MPC: 

=arg { Φi +  } 

Step 3: Update   in individual D-MPC, if the 

operating region changes. 

Step 4: Receive from each turbine and form  

 [ ,…. ] (D-MPC ⇒ Central Unit). 

Step 5: Receive the updated (D-MPC ⇒Central 

Unit). 

Step 6: Update  according to  and the dual 

variables in Central Unit: 

=  +  (G - b 

=  

= + (  ) (  

End For 

According to the property the algorithm is proved to 

converge with the rate 

d( )-d( )        

where k represents the iteration number. The details of 

the proof are described. As illustrated, the convergence 

rate is improved from O(1/k) to O(1/ ) with 

negligible increase in iteration complexity, compared 

with the standard gradient method. As L = G  

has the tightest lower bounds to d(λ) and is adopted in 

this paper. Since all the turbines are correlated, the  

can be calculated as follows: 

=  

To be noticed, the linearized model of the individual 

turbine varies with the change of the operating region. 

As described .  is dependent on model parameter. 

Accordingly, the Hessian matrix . is time-variant, 

which further leads to the variation of . Obviously, 

the variables involved in the computation, including  

and , can be pre-computed offline and stored 

according to the operation regions. 

The computation burden of the central unit only 

consists of the calculation of , which is the simple 

addition of the individual  and the dual variable 

updates during iterations. Most computation tasks are 

distributed to the local D-MPCs. Besides, due to the 

reduced iteration number, the communication burden 

between D-MPC and the central unit is largely reduced. 

In summary, this control structure is independent from 

the scale of the wind farm and suitable for modern 

wind farm control application. 

The optimality of the D-MPC is dependent on the 

accuracy of the wind turbine model. The adopted 

model is a simplified model where some fast dynamics 

are ignored. In the practical operation, there exist errors 

and uncertainties in the system parameters, which 

include the inertias of the mechanical part, control 

parameters of pitch control, and identified parameters. 

In this paper, in order to investigate the robustness of 

the D-MPC under parameter errors, the errors of the 

inertias and measurements are considered and the cont-

rol parameters are assumed to be perfectly known. The 

errors existing in the inertias are assumed to be boun-

ded and follow a normal distribution. The identified 

parameters rely on the measurements of state and input 

variables (effective wind speed estimation). Similarly, 

the measurement errors are also assumed to be 

bounded and follow a normal distribution. 

4.Simulation Result and Discussion 

4.1 Operation under High and Low Wind Condi-

tions 

The operation of the wind farm was simulated under 

both high and low wind conditions. Accordingly, the 

power references of the wind farm  are defined 

as 40 and 30 MW and assumed to be constant during 

the simulation. For the wind input to individual wind 

turbines, the turbulence is assumed to be fixed. A 

constant difference (4 m/s) is added in the mean part. 

As an example, the wind speed of WT 05 for both wind 

conditions were studied and covers the range between 

11 and 20 m/s.  



Pak. J. Biotechnol. Vol. 14 (Special Issue II) Pp. 214-219 (2017) Mallika S. et al., 
 

218 
 

 
 

 
Fig 4.1 Simulation Output for Operation under High 

and Low Wind Conditions 

 

 
 

 
Fig 4.2 Simulation Output for Operation under High 

and Low Wind Conditions 
 

5.CONCLUSION 

In this project, the D-MPC algorithm based on the fast-

dual gradient method is developed for the active power 

control of a wind farm. Compared with the conven-

tional wind farm control, the D-MPC strikes a balance 

between the power reference tracking and the minimi-

zation of the wind turbine loads. Different from C-

MPC, in the developed D-MPC, most of computation 

tasks are distributed to the local D-MPCs equipped at 

each wind turbine. The computation burden of the cent-

ral unit is significantly reduced, which is only respon-

sible for the update of dual variables. This control 

structure is independent from the scale of the wind 

farm. Besides, with properly calculated Lipschitz cons-

tant L, the adopted fast dual gradient method can signi-

ficantly improve the convergence rate from O(1/k) to 

O(1/k2), which reduces the iteration number. Consequ-

ently, the communication burden between local D-

MPC and central unit is largely reduced. By means of 

the developed PWA model in Part I, the calculation 

work of L dependent on the model parameter of the 

operation region can be done offline and stored. Thro-

ugh different case studies, the power tracking control 

performances of the developed D-MPC are verified to 

be identical to these of C-MPC. The mechanical loads 

experienced by individual wind turbines have been 

largely alleviated without affecting tracking the power 

reference of the wind farm. The robustness of D-MPC 

to errors and uncertainties of system parameters is also 

investigated and verified by including errors of the 

mechanical inertias and measurements. The D-MPC 

can be used for real-time control of modern wind 

farms. 

Future Scope: In future for reducing the computa-

tional complexity of the existing project, it has been 

planned to implement frequency propagation method. 
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