EFFICIENT INTERLEAVED BUCK BOOST CONVERTER FOR SOLAR APPLICATIONS

M.SUMITHRA, R. KAVITHA

Dept. of Electrical and Electronics, Kumaraguru college of technology, Coimbatore, India sumi94113@gmail.com, Kavitha.r.eee@kct.ac.in

ABSTRACT

Solar Energy is the prominent source of renewable energy. But, the practical DC –DC converter can extract only partial amount of energy from the Solar cells by our conventional methods. An interleaved buck boost dc/dc converter is developed that it requires only a smaller input/output filters, it provides the fast dynamic response and low stress on the devices than conventional designs, for solar powered applications. Input and output ripples of voltage and current of the converter is very low. The simulations were carried out using MATLAB/SIMULINK software package and hardware implemented.

keywords- Interleaved converter, boost converter, solar, ripple.

I. INTRODUCTION

As the demand of power is gradually increasing dayby-day, one of the suitable best alternatives is choosing non-conventional sources like solar energy as the primary sources for power generation in power stations. Solar power which is several times greater than the one, which we are using at the present. Solar power which is surplus in nature is the best solution for solving the grievance of global warming and energy thrust caused by the increase of power consumption.

To enable the solar cell and to utilize the sunlight efficiently, DC-DC converters are used for the solar power generation. But, the constraint is that DC-DC converters cannot extract 100% energy from the solar cell. Though, many techniques have been invented and implemented still, there is a lag and restrictions in the research of boost converters. Interleaving technique being an evolving technique, it can be a solution for the aforementioned problem

II. SOLAR PANEL DESIGN FOR BUCK AND BOOST

The model of a solar cell shown Figure 1 is designed with all losses into account. The input current source (Is) represents the optical power loss of the solar cell. The recombination losses which is represented by diode (D) is connected parallel to Is. The ohmic losses are represented by the shunt resistance (Rsh) and series resistance (Rs). The sum of all resistance in the current path that is Rs should be as low as possible.

Fig. 1. Solar Model

The efficiency of a solar cell depends mainly on Short circuit current (Isc), open circuit voltage (Voc), Fill factor (FF). Best value of a good solar cell should be \geq 0.80.

$$FF = [V_{oc} - In (V_{oc} - 0.72)] / [V_{oc} + 1]$$

$$V_{oc} = [kT/q] * [ln (l_1 / l_0) + 1)];$$

Where, $I_0 \rightarrow$ Recombination current in the material due to the electron-hole pair;

 $I_1 \rightarrow Light$ generated current;

 $V_{oc} \rightarrow$ Maximum voltage obtained when solar cell is left open;

 $I_{sc} \rightarrow Maximum$ current when the solar cell terminals are shorted.

A buck converter is one which steps down voltage from its input to its output. The solar cell with boost converter, which is designed to produce an output voltage of 24.78V. In Figure 2, a simple buck converter is shown where the input of the converter is a solar cell.

Fig. 2. Solar output for Buck mode

A boost converter is one which gives increased output than the given input. The solar cell, which is designed to produce an output voltage of 48.67V. In Figure 2, a simple buck converter is shown where the input of the converter is a solar cell.

Fig. 3. Solar output for Boost model

III MODES OF OPERATION

The proposed converter has Magnet coupling between input and output inductors, that can be considered as an ideal single-turn-ratio transformer along with magnetizing and leakage inductors. This converter can operate both in boost and buck modes.

Mode 1:(boost)

When switches 3 and 4 (Q3 and Q4) turn on permanently and switches 1 and 2 (Q1 and Q2) operate with PWM signals boost mode is achieved.

Mode 2:(buck)

In the buck mode, Q1 and Q2 turn off permanently, and Q3 and Q4 operate in PWM.

The PWM activation signals of Q1 and Q2 are similar to each other with a phase shift of Ts/2 for catering the interleaved pattern. The output voltage is regulated around a desired value by adjusting the duty cycle of the switches (here 24V and 58V) in both operational modes. During the transitions between the operating modes a damping network which connects the capacitor and a series resistor decays the output voltage oscillations when the input voltage is near the output voltage. The benefit of output voltage oscillation cancellation via the time and the frequency domain analyses. In addition, through increasing the number of interleaved phases in boost and buck stages, the proposed converter can be easily used as a modular converter being suitable for transferring high power density in applications such as individual storage systems and many others.

Interval 1: In this time interval, Q1,Q3, and Q4 are in conducting mode, causing the magnetizing inductor 1 to start saving energy and concurrently magnetizing inductor 2 to transfer its stored energy to the output load and inductors via D2.

Interval 2 and 5: In this time intervals, Q3 and Q4 are in conducting mode, while Q1 and Q2 turn off. Therefore, the energy stored in magnetizing inductors 1 and 2 starts transferring to inductors 1 and 2 via D1and D2. Similarly, a set of differential equations can be found which describes the voltage across the capacitors and current passing through the inductors for other time intervals. The differential equations which describes the voltage across the capacitors and current passing through the inductors in these time intervals can be obtained as in interval 1.

Fig. 5. During interval 2 and 5

Interval 3: In this time interval, Q3 is in conducting mode, while Q1, Q2, and Q4 are off. The energy transfer in this interval is completely similar to the previous interval except that the energy stored in both input magnetizing inductors is transferred to inductor 1 only.

Interval 4: In this time interval, Q2, Q3, and Q4 are in conducting mode, while Q1 is off. The energy transfer in this interval is also similar to that of interval 1 except that the functions of magnetizing inductors 1 and 2 replace each other.

Interval 6: In this time interval, Q4 is in conducting mode, while Q1, Q2, and Q3 are off. Therefore, the energy stored in magnetizing inductors 1 and 2 is transferred to the output capacitor and inductor 2.

IV. SELECTION OF BUCK-BOOST POWER STAGE Selection of the inductors, the input and output capacitors, the power switches and the output diodes are involved in the interleaved converter design. Both channels of an interleaved design have the identical inductor and diodes. To select these components, it is necessary to know the duty cycle range and peak currents. The output power has been channeled through two power paths, it requires a good starting point to design the power path components using half the output power.

The following parameters are required to calculate the power stage component.

Voltage across the capacitor $-V_{c1}$, V_{c2} Change in inductor current $-\Delta_{iL1}$ or 2 Input voltage - V_g Change in magnetizing current- Δi_{Lm1} or 2 Magnetizing inductance $-L_{m1}$, L_{m2} Time period - T_s Input voltage - V_g Output voltage - V_{out}

V. EXPRESSION FOR INDUCTANCE AND CAPACITANCE

The nominal current for power inductor is referred commonly to self heating with DC current at the temperature of $+40^{\circ}$ C. DC Resistance.

A power inductor is selected with the minimum possible DC resistance which is important after the calculated values for inductance L and inductor currents. The DC resistance value is useful in finding wire heating losses for minimizing the power loss of the inductor. Choosing higher inductance value leads to increase the value of DC resistance and lower inductance value leads to decrease the value of DC resistance. Preferably, use of shielded inductor with same inductance value leads to decrease the value of DC resistance. It is advisable to keep Electro Magnetic Compatibility (EMC) for critical applications, the shielding of power inductor avoids uncontrolled magnetic coupling due to air gap exists in the windings with adjacent conductor tracks or components. It is highly preferable for selecting power inductor of small size, high energy storage density and low DC resistance.

Magnetizing inductance L_{m1} and L_{m2} Boost mode:

$$\frac{V_g D_{12} T_s}{\Delta i L_{m1 \text{ or } m2 \text{ boost}}}$$

$$\Delta V_{c1buck} T_s$$

 $16 \Delta i L_{m1 or 2 buck}$

Inductance L₁ and L₂: Boost mode:

$$\frac{V_g D_{12} T_s}{\Delta i L_{m1 \text{ or } 2 \text{ boost}}}$$

Buck mode:

Buck mode:

$$\frac{(V_g - V_{out})D_{34}T_s}{\Delta i L_{m1 \text{ or } 2 \text{ buck}}}$$

To use low Equivalent Series Resistance (ESR) capacitors to minimize the ripple on the output voltage is the best practice. Ceramic capacitors are a good option if the dielectric material is X5R or better. Capacitance C_1 :

Boost mode:

$$\frac{V_{out}}{R} \frac{D_{12}}{(1 - D_{12})} \frac{(1 - 2D_{12})}{\Delta V_{c1boost}} \frac{T_s}{2}$$

Buck mode:

$$\frac{V_{out}}{R} \frac{(D_{34}-1)(2D_{34}-1)}{\Delta V_{c1buck}} \frac{T_s}{2}$$

Capacitance C₂:

Boost mode:

$$\frac{1}{32}T_s\Delta i_{Lm1or2boost}$$

 $\Delta V_{c2boost}$

Buck mode:

$$\frac{\frac{1}{32}T_{s}\Delta i_{L1or2buck}}{\Delta V_{c2buck}}$$

VI SIMULATION RESULT

The schematic diagram and output for the boost mode is shown in figure 9 and figure 10.

Fig. 9. Simulation diagram for boost mode

Fig. 10. Simulation output for boost mode

The schematic diagram and output for the buck mode is shown in figure 11 and figure 12.

Pak. J. Biotechnol. Vol. 14 (Special Issue II) Pp. 33- 37 (2017) Sumithra M. and R. Kavitha

Fig. 12. Simulation Output for buck mode

The switching pattern Q1, Q2, Q3 and Q4 for buck and boost mode operation is shown in figure 13, 14, 15, 16.

Fig. 14. switching pattern for Q2

Fig. 15. Switching pattern for Q3

Fig. 16. Switching pattern for Q4

SOLAR OUTPUT

The output of the solar with boost and buckmode with its transient is shown in figure 17 and figure 18.

VII CONCLUSION

Thus, the given interleaved technique based buck and boost dc-dc converter has very low I/O current ripples with a very high efficiency. This simulation technique can utilized to select appropriate components for the converter. The circuit are simulated using MATLAB/ Simulink. Finally, the results indicate that the efficiency of the proposed solution is higher than the conventional solution under the same condition.

REFERENCES

- Ku C-P., Chen D., Huang C-S., Liu C-Y., A Novel SFVM-M3 Control Scheme for Interleaved CCM/DCM Boundary-Mode Boost Converter in PFC Applications. IEEE Trans Power Electron. 26(8): 2295–303 (2011).
- 2. Pahlevaninezhad M., Das P., Drobnik J., Jain P.K., Bakhshai A., A ZVS Interleaved Boost AC/DC Converter Used in Plug-in Electric Vehicles. IEEE Trans Power Electron 27(8): 3513–29 (2012).
- 3. Sivachidambaranathan V., Dash S.S., Simulation of Half Bridge Series Resonant PFC DC to DC Converter. IEEE International Conference on Recent Advances in Space Technology Services and Climate Change (RSTS and CC-2010). Sathyabama University in association with Indian Space Research Organisation (ISRO), Bangalore and IEEE (2010).
- 4. Zheng Zhao, Ming Xu, Qiaoliang Chen, Jih-Sheng (Jason) Lai and Younghoon Cho, Derivation, Analysis, and Implementation of a Boost-Buck Converter-Based High-Efficiency PV Inverter. IEEE Transactions on Power Electronics 27(3): 1304 -1313 (2012).

- Shinjo F., Wada K. and Shimizu T., A Single-Phase Grid-Connected Inverter with a Power Decoupling Function, Proc. IEEE Power Electron. Spec. Conf. Pp. 1245-1249 (2007).
- Koran A., Sano K., Kim R.Y. and Lai J.S., Design of a Photovoltaic Simulator with a Novel Reference Signal Generator and Two-Stage LC Output Filter. IEEE Trans. Power Electron 25(5): Pp. 1331-1338 (2010).
- Laboure E., de Creteil I.U.F.M., Cuniere A., Meynard T.A., Forest F. and Sarraute E., A Theoretical Approach to InterCell Transformers, Application to Interleaved Converters", IEEE Transactions on Power Electronics 23(1): 464-474 (2008).
- Chen Y.M., Wu H.C., Chen Y.C., Lee K.Y. and Shyu S.S., The AC Line Current Regulation Strategy for the Grid-Connected PV System. IEEE Trans. Power Electron 25(1): 209-218 (2010).
- 9. Guan X., Xu Z. and Jia Q.S., Energy-Efficient Buildings Facilitated by Microgrid. IEEE Trans. Smart Grid 1(3): 243-252 (2010).
- Laboure E., de Creteil I.U.F.M., Cuniere A., Meynard T.A., Forest F. and Sarraute E., A Theoretical Approach to InterCell Transformers, Application to Interleaved Converters. IEEE Transactions on Power Electronics 23(1): 464-474 (2008).