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ABSTRACT 
The foremost objective of this research work is to implement Artificial Neural Network (ANN), to improve 

spark erosion machining performance of aluminum alloy AA 6061 hybrid composites by controlling the process 

constraints, which is suitable for bio medical applications. Aluminum composites are mostly used to replace the 

conventional materials attributable to their less weight, notable wear and corrosion resistances. These composites 

are used in automotive, aerospace, electronics and bio medical applications. Machining of aluminium composites 

using conventional machining technique is one of the major challenges because of the presence of hard particles in 

aluminium matrix. Unconventional machining techniques have been preferred for machining aluminium composites 

to enhance better surface quality. In the present study the composite specimen was processed through stir casting 

and machining was carried out using spark erosion machining, by varying four process constraints with the 

application of design of experiments. ANN trained with multi-layer feed forward through the error back-

propagation training algorithm, was used to model the network and predict the material removal rate (MRR) of the 

composite. The outcomes exposed that the projected values found from the ANN model were in good agreement 

with the investigational values and to study the machining characteristics of composites, the model could be 

effectively applied.  
 

Keywords: Aluminium Hybrid Composites, Spark erosion machining, Optimization, Artificial Neural Network 

(ANN), Composites, Bio-medical applications 
 

 

INTRODUCTION: 

The requirement of advanced materials in 

differrent industrial sectors led to the rapid 

development of aluminium composites. Garg et 

al., [2012] described that, the aluminium hybrid 

composite materials have been used in many appl-

ications such as aerospace, defense, bio medical 

and automotive industries due to its superior char-

acteristics such as virtuous wear resistance, speci-

fic strength and strength-to-weight fraction. The 

physical and mechanical properties of these comp-

osites can be altering by choosing different rein-

forcements. So aluminium composites are recently 

is drawing interests of the researchers. Hassan et 

al., [2009] stated that, the aluminium alloys are 

used as the matrix material in aluminum compo-

sites because of their elated corrosion resistance, 

low density, high damping capacity and good ele-

ctrical and thermal conductivities. There are vari-

ous methods are available for fabricating alumi-

nium composites. Among these methods, stir cast-

ing method, has evidenced to be comparatively 

inexpensive and comprehensible. In this method, 

usually the reinforcement particles are dispersed 

into the molten aluminum melt through mecha-

nical stirring, which is the key part.  
 

Aluminum composites by adding up to 30 % 

volume fractions of reinforcements could be 

fabricated using this method. Debaprasanna Puhan 

et al., [2013] found that, the major problem conn- 

ected with this method is the separation of rein-

forcements due to settling of the particles during 

solidification process. This could be easily eluded, 

by selecting proper particle size and pouring 

temperature. The key benefit of using this method 

is its suitability for mass production. Balasubra-

manian and Senthilvelan [2013] reported that, 

spark erosion machining is mainly employed for 

machining stiff metals that would be challenging 

to machine with traditional techniques. This met-

hod is gained admiration, as various 3D intricate 

profiles can be machined using a simply formed 

electrode tool. It utilizes well-ordered sparks that 

discharges between the specimen and the tool in a 

di-electric liquid. Rao et al., [2010] found that 

spark erosion machining is used in wide area in 

the built-up of self-propelled, space and medical 

components. There is no direct interaction betw-
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een work piece and electrode. So, it is very comp-

etent in machining high strength and very tough 

materials.   

The choice of the apt machining settings to 

get optimal material removal rate through spark 

erosion machining process is built on the nume-

rous process constraints linked to material remo-

val rate (MRR). Conventionally, it is conceded, 

based on the worker’s skill or technical records 

given by the spark erosion machining equipment 

makers. The background specified by the equipm-

ent manufacturers is merely appropriate for com-

mon steel grades. Ramezan Ali [2011] concluded 

that the preset conditions for newer materials such 

as aluminum composites, special steels, titanium 

alloys and advanced ceramics should be improved 

by conducting thorough experiments. Surappa 

[2003] reported that, the spark erosion machining 

process optimization is complicated, due to seve-

ral controllable machining constraints. A minor 

change in one constraint will impact the process in 

an intricate way. Paramanantham Hema Prabha 

[2017] developed a model and optimized the 

parameters for packaging applications. 

     Markopoulos et al., [2008] stated that ANN is 

a model for computing, storing and recovering 

learnt information. It consists of solid unified 

computing elements that are similar to those in 

intricate neurons in biological systems. Through 

the learning method, information is learnt, and it 

is kept in synaptic bulks of the inter-nodal net-

works. Complex input/output relationships can be 

modeled using ANN. Raut and Shinde [2015] 

constructed an ANN model built on the experi-

mental data and inputs and outputs were taught to 

exactly forecast the method. ANN acts in a chief 

part in solving linear and nonlinear problems. 

Paulo Davim [2008] concluded that, in ANN 

modeling, knowledge/teaching algorithms and 

numbers of unseen neurons are mixed to obtain 

the least inaccuracy. Shashikant et al., [2014] and 

Thillaivanan et al., [2010] developed mathemati- 

cal model using ANN and optimized to improve 

the performance in spark erosion machining pro-

cess. Sasikala et al., [2018] developed Artificial 

Neural Networks for vertical handoff prediction. 

As the spark erosion machining process is 

associated with high cost, it is very important to 

develop a model and optimizing the same is very 

important. Grounded on the above respects, in this 

research work an aluminium hybrid composite 

containing 10 wt% SiC and 4 wt% graphite 

particulates were made-up using stir casting. This 

material was machined using spark erosion mach-

ine by changing the route constraints namely peak 

current, discharge time, voltage and flushing pre-

ssure. A model was established using ANN based 

on the experimental data with back-propagation 

learning algorithm to envisage the material remo-

val rate. The results attained from the ANN model 

shows that the predicted material removal rate 

values are nearer to the recorded values. 
 

MATERIALS AND METHODS 

Materials: The matrix chosen for the present 

study was Aluminium alloy AA 6061 alloy. The 

selection of this alloy is due to high strength with 

the option of modifying its properties by directing 

appropriate heat treatment. The elemental compo-

sition of Aluminium alloy AA 6061 was obtained 

through spectrometer and is shown in table.1. 

Silicon carbide and graphite particles are added to 

improve wear resistance and reduce friction. The 

average size of the reinforcement particles used in 

the present study is 75 microns. 

 

Table 1 Chemical composition of Aluminium alloy AA 6061 

Element Cr Cu Fe Mg Mn Si Ti Zn Al 

wt.% 0.003 0.24 0.16 0.89 0.48 0.63 0.014 0.007 97.57 
 

Specimen Preparation: Velmurugan et al., 

[2011] prepared hybrid composite specimens usi-

ng stir casting method. The melting was made in a 

furnace. The matrix materials were placed inside 

the graphite crucible and kept inside the melting 

furnace. The reinforcement particulates were hea-

ted at a temperature of 673 K for 45 minutes to 

eradicate moisture. The heated aluminium melt 

was degassed at a temperature of 1063 K. The 

graphite stirrer was positioned in the crucible once 

the temperature of the melt touched 1073 K. Then 

the stirrer is used to stirrer the molten metal with 

the reinforcement particles at 600 rpm for 10 

minutes. To improve the wettablity of matrix and 

reinforcement small amount of magnesium was 

added. When stirring is over, crucible was taken 

outside, and the molten slurry was transferred into 

a tubular steel mould of 15 mm diameter and 80 

mm length. While pouring, the temperature was 

kept at 873 K. The mould was then cooled down 

and the cast composites were detached from it. 

Then the cast composite was machined to 10 mm 

diameter and 25 mm length (Figure.1) for conduc-

ting machining study. 
 

 
 

 



Vol. 15 (2) 2018                                                                                                    Isolation of process parameters ………. 305 

 

 

 
 

 

Fig. 1: Specimen used for spark erosion machining 

study 
 

Spark erosion machining: Nilesh Ganpatrao 

Patil and Brahmankar [2010] stated that, in 

contemporary industrial applications spark erosion 

machining is used to perform high-precision 

machining of difficult-to-machine materials. Spark 

erosion machining uses thermo-electric energy for 

material removal. In this work, research was perf-

ormed by ARD-make die-sinking spark erosion 

machining machine. A probe made of copper was 

used as the tool and the work part was Aluminium 

alloy AA 6061 composites strengthened with 10 

wt% SiC and 4 wt%. graphite particulates. The 

dielectric fluid used is commercial grade spark 

erosion machining oil. A flushing jet method as 

revealed in Figure 2, was engaged to flush out the 

rubbles from the fissure zone. The required pro-

cess constraints were fixed in the spark erosion 

machine. The research was performed according 

to the settings mentioned in the design matrix. 

The weights of specimen and tool were measured 

with an automatic balancing machine after each 

experiment. 
 

 

 

 

 

 

 

 
Fig. 2: Jet flushing system in spark erosion machining 
 

Process constraints and response variables: In 

this work, the process constraints selected are 

peak current, discharge time, voltage and flushing 

pressure. By conducting preliminary experiments 

using a distinct variable, the choice of the process 

constraints was fixed. The process constraints and 

their levels are specified in Table 2. The depen-

dent response, carefully chosen for this work is 

the material removal rate (MRR).  

 

Table 2 Machining constraints and their levels 

Machining 

constraints 
Symbols Unit 

Level 

-2 -1 0 +1 +2 

Peak current I A 3 6 9 12 15 

Discharge time  T µs 200 300 400 500 600 

Voltage V V 30 40 50 60 70 

Flushing Pressure P psi 1 2 3 4 5 
 

The machining period taken was 10 minutes for 

each experiment. MRR is expressed (equation 1) 

as the ratio of the change in weight of the compo- 

site specimens before and after machining to the 

time taken for the machining, i.e, 

MRR = 






 −

t

WW jfji
              (1) 

where, weights of the composite specimens afore 

and afterward machining
 
are

 jiW and jfW , and t is 

the machining period. 

Design of Experiments: In this research, the tri-

als were conducted based on the central composite 

second-order rotatable scheme (Table 3). Kannan 

and Murugan [2006] reported that, for 4 variables 

designated, 31 trials with 16 factorial points, 8 

axial points are required to training the central 

composite design and to estimate the experimental 

error seven center points have been added. The 

experiments were carried out based on the run 

order mentioned in the design matrix. At the 

completion of each run, all the 4 constraints were 

wholly improved, in accordance with the design 

matrix and reset for the subsequent run to avoid 

errors in trial sets. 

 

Table 3 Design Matrix for spark erosion machining study 

Run order 
Std. 

Order 

Peak 

current (I) 

A 

Discharge 

time (T) 

µs 

Voltage 

(V) V 

Flushing 

pressure (P) 

psi 

Experimental 

Value 

Predicted Value 

using ANN 

 

Absolute 

percentage error 

(%) 
MRR 

(g/min) 

MRR 

(g/min) 

1 6 1 -1 1 -1 0.481 0.475 1.26 

2 12 1 1 -1 1 0.53 0.535 -0.93 
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3 27 0 0 0 0 0.464 0.476 -2.52 

4 18 2 0 0 0 0.583 0.562 3.74 

5 14 1 -1 1 1 0.515 0.517 -0.39 

6 31 0 0 0 0 0.491 0.496 -1.01 

7 10 1 -1 -1 1 0.524 0.529 -0.95 

8 7 -1 1 1 -1 0.449 0.439 2.28 

9 22 0 0 2 0 0.419 0.429 -2.33 

10 23 0 0 0 -2 0.431 0.442 -2.49 

11 1 -1 -1 -1 -1 0.45 0.461 -2.39 

12 29 0 0 0 0 0.464 0.477 -2.73 

13 24 0 0 0 2 0.521 0.512 1.76 

14 30 0 0 0 0 0.497 0.491 1.22 

15 4 1 1 -1 -1 0.51 0.519 -1.73 

16 19 0 -2 0 0 0.476 0.473 0.63 

17 25 0 0 0 0 0.483 0.489 -1.23 

18 28 0 0 0 0 0.486 0.487 -0.21 

19 15 -1 1 1 1 0.454 0.449 1.11 

20 20 0 2 0 0 0.542 0.532 1.88 

21 21 0 0 -2 0 0.495 0.484 2.27 

22 11 -1 1 -1 1 0.461 0.473 -2.54 

23 26 0 0 0 0 0.495 0.499 -0.80 

24 13 -1 -1 1 1 0.451 0.440 2.50 

25 16 1 1 1 1 0.519 0.529 -1.89 

26 5 -1 -1 1 -1 0.441 0.428 3.04 

27 8 1 1 1 -1 0.492 0.498 -1.20 

28 2 1 -1 -1 -1 0.498 0.490 1.63 

29 9 -1 -1 -1 1 0.46 0.468 -1.71 

30 3 -1 1 -1 -1 0.453 0.459 -1.31 

31 17 -2 0 0 0 0.41 0.425 -3.53 
 

Artificial Neural Network modelling: Tsai and 

Wang [2001] stated that neural networks compri-

ses of unpretentious processors, also termed as 

neurons and are connected by subjective net-

works. The neuron forms the root for organizing 

the neural networks. Every neuron has inputs and 

creates a response that can be seen as the likeness 

of native data kept in the connections. This res-

ponse signal of a neuron is provided for the addi-

tional neurons as feedback signals through inter 

connections. Since the ability of an only neuron is 

incomplete, composite tasks could be comprehen-

ded by involving many processing elements. In 

this research work, a multi-layer feed forward 

neural network was established and taught using a 

back-propagation algorithm. A three-step proce-

dure used in the improvement of the neural 

network model consists of collection of input and 

output dataset, pre-processing of feedback and 

response dataset and neural network training and 

testing. The measured experimental values of the 

material removal rate during spark erosion mach-

ining were used to develop the neural network 

model. In this research study, the inputs are the 4 

main constraints, while the output data set is a 

single response (MRR). The neural network 

model was built using 31 experimental data. 

Among these, 25 data were selected for training; 

remaining 6 data (bold values in Table 3) were 

utilized for testing. The training and testing data 

are normalized using Equation 2 for balancing the 

importance of every constraint. It is recommended 

that the normalized values lie between 0.1 and 0.9 

fairly than between 0 and 1 to avoid saturation of 

the sigmoid function (Equation 3) thereby leading 

to relaxed or no learning. Percentage absolute 

errors between experimental and predicted values 

are calculated using Equation 4.  

Input value Minimum value
Normalized value

Maximum value Minimum value

 −
=  

− 
           (2);    ( )

xe
xfy

−+
==

1

1
        (3) 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 = {𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒}      (4) 
 

In this research, overseen learning was emplo-

yed and the teaching of the ANN was done using 

the neural network tool box utility accessible in 

the MATLAB R14 software. The multilayer feed 

forward neural network construction entails 4 

neurons in the input layer, and only one neuron 

in the output layer (material removal rate). The 

neural network construction consists of the num-
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ber of layers, neurons in every layer and how the 

layers inter connected. The neuron architecture 

was resolved using a trial-and-error approach. 

One concealed layer with 10 neurons shown in 

Figure 3 was engaged in the current work.  
 

 

Fig. 3 Neural Network Architecture 
 

The following learning factors were used as 

inputs for the neural network: 

Number of input neurons: 4  

Number of layers: 3 

Number of output neurons: 1 

Number of hidden neurons: 10  

Weight initialization: Random weight 

initialization  

Learning rate (η) = 0.04 

Momentum constant (α) = 0.85 

Minimum number of epochs = 1500 

Error function: Mean square error function 

Learning rule for training constraints: Back 

propagation 
 

RESULTS AND DISCUSSION 

Microstructure of spark erosion machined 

composite surfaces: Microstructures of the spa-

rks erosion machined composite specimen’s sur-

face are shown in Figure 4a-b. The electric spa-

rks strike the of the composite material’s surface 

more hugely when the release current rises from 

3A to 15A. In turn, the diameter and the depth of 

craters increase, and surface roughness also surge. 

Generally, at low liberation energies the craters 

are thin, and at high liberation energies the crat-

ers are cavernous. When there is an increase in 

flushing pressure, the debris scattered over the 

surface exhibits increased rate of solidification. 

The similar observation was reported by the ear-

lier investigators Mandal et al., [2007] and 

Pramanik [2014], as they carried out studies on 

spark erosion machining of aluminium compo-

sites. 
 

   
        Fig. 4ab: SEM photograph of spark erosion machined surface of Al 6061 composites reinforced with SiC and 

graphite particles at a voltage 50V and a flushing pressure 3psi: a) 3A,400µs, b) 15A,400µs 
 

Artificial Neural Network (ANN) modelling: A 

multilayer perceptron neural architecture has been 

developed with one concealed layer amongst the 

I/O layers. Single unseen layer is adequate for 

back-propagation neural web to outline the I/O 

charting. The number of neurons in the input layer 

and the output layer are based on the input and 

output constraints. The network model was taught 

using a feed forward back propagation algorithm. 

Patel et al., [2010] was used absolute error percen-

tage was employed to appraise the presentation of 

the developed neural network model. It was detec-

ted that experimental and projected values of the 

material removal rate are very near to each other, 

in this study. The same observation was observed 

by the previous researcher Thillaivanan et al., 

[2010], who also developed ANN model to study 

the spark erosion machining characteristics. Fig-

ure 5 represents the error profile of material remo-

val rate mutually for teaching and analysis data 

and the maximum proportion of error was estima-

ted as 3.74 %. The errors due to experimental var-

iation were found to be much higher than these 

levels of error. It was also perceived that the 

maximum and minimum total proportion errors of 

3.04% and -3.53 % respectively, were attained for 

material removal rate prediction of the trained 

data. For the test data, it could be detected that a 

 
a 

Crater 

 

b 
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highest and least total proportion error of 3.74 % 

and -2.79 % respectively. Figure 6 and 7 shows 

the assessment of the experimental and predicted 

material removal rate for the teaching and record-

ing data. From this graph, it could be plainly per-

ceived that, the established neural network model 

was appropriately taught and also revealed consis-

tent material removal rate values. The scatter dia-

gram of trial and expected values of material rem-

oval rate for training and testing data is shown in 

Figure 8 and 9. It could also be clearly seen that 

the foreseen values of material removal rate are 

lying closer to the conforming trial values. These 

results obtained from the error profile graph and 

scatter diagram point out that, the well taught 

suggested network model has good precision in 

predicting the material removal rate through spark 

erosion machining of aluminium alloy AA 6061 

hybrid composites. 
 

 

 

Fig.5 Error profile of material removal rate for training and testing data 
 

 

 

Fig.6 Comparison for the training data of metal removal rate 

 

Fig. 7: Comparison for the testing data of metal removal rate 

P
er

ce
n

ta
g

e 
o

f 
a

b
so

lu
te

 

er
ro

r

Experiment Run Order

0.4

0.45

0.5

0.55

1 3 5 7 9 11 13 15 17 19 21 23 25

M
et

a
l 

R
em

o
v

a
l 

R
a

te
 

(g
/m

in
)

Training data number

Experimental MRR Predicted MRR

0.4

0.45

0.5

0.55

0.6

1 2 3 4 5 6

M
et

a
l 

R
em

o
v

a
l 

R
a

te
 

(g
/m

in
)

Testing data number

Experimental MRR

Predicted MRR



Vol. 15 (2) 2018                                                                                                    Isolation of process parameters ………. 309 

  

Fig. 8: Scatter plot for the training data of metal removal rate 

 

Fig. 9: Scatter plot for the testing data of metal removal rate 

 

CONCLUSIONS 

The following conclusions were drawn from 

the present investigations after conducting the 

machining studies on aluminium hybrid composi-

tes and the subsequent development of the neural 

network model: 

➢ Aluminium hybrid composites were made-up 

using the stir casting method and machining 

studies were carried out using die sinking 

electric discharge machine.  

➢ A multi-layer feed forward ANN taught by 

error back-propagation algorithm was used 

to develop the model to predict material 

removal rate.  

➢ SEM micrographs of the spark erosion mach-

ined composite surface revealed that the pla-

sma channel caused detachment of the rein-

forcements, by melting and drying up of the 

matrix material. 

➢ The experimental values and predicted val-

ues were very closer to each other. Hence the 

experimental and ANN results obtained were 

in agreement. Henceforth, it could be stated 

that ANN could be effectively employed as a 

prediction method during machining of 

aluminium hybrid composites. 
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