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ABSTRACT 
 In this paper, we are using two different transformations to transform the arbitrary linear tetrahedron element to a 

standard 1-Cube element and obtain the numerical integration formulas over arbitrary linear tetrahedron element 

implementing generalized Gaussian quadrature rules, with minimum computational time and cost. We also obtain 

the integral value of some functions with singularity over arbitrary linear tetrahedron region, without discretizing 

the tetrahedral region into P3 tetrahedral regions. It may be noted the computed results are converging faster than 

the numerical results in referred articles and are exact for up to 15 decimal values with minimum computational 

time. In a tetrahedral sub-atomic geometry, a focal particle is situated at the middle with four substituents that are 

situated at the sides of a tetrahedron. The bond edges are cos−1(−⅓) = 109.4712206...° ≈ 109.5° when each of the 

four substituents are the same, as in methane (CH4) and in addition its heavier analogs. The impeccably 

symmetrical tetrahedron has a place with point amass Td, yet most tetrahedral particles have brought down 

symmetry. Tetrahedral atoms can be chiral. Mathematically the problem is to evaluate the volume integral over a 

arbitrary tetrahedron transforming the triple integral over arbitrary linear tetrahedron into the integrals over a 

standard 1-cube using two different parametric transformations.  
 

Keywords— generalized Gaussian quadrature; linear tetrahedral elements; classical Gauss quadrature; finite 

element methods 
 

INTRODUCTION 

    Numerical methods date back to Archimedes 

who tried to calculate the area of a circle, which 

happened even before the field of integral calculus 

was formed. Finite element method (FEM), is an 

ideal numerical method for a wide range of engi-

neering, biomedical, etc., problems due to its rich 

mathematical formulation and the ability to model 

complex geometries using unstructured meshes 

and employing elements that can be individually 

tagged makes the method unique. It stems from 

properly-posed functional minimization princip-

les. Numerical integration is an essential tool to 

evaluate integrals over iso-parametric tetrahedral 

elements, as in Fig.1.  

In a tetrahedral sub-atomic geometry, a focal par-

ticle is situated at the middle with four substitute-

nts that are situated at the sides of a tetrahedron. 

The bond edges are cos−1(−⅓) = 109.4712206...° 

≈ 109.5° when each of the four substituents are 

the same, as in methane (CH4) and in addition its 

heavier analogs. The impeccably symmetrical tet-

rahedron has a place with point amass Td, yet 

most tetrahedral particles have brought down 

symmetry. Tetrahedral atoms can be chiral. 
 

 
Fig.1 Tetrahedron with four vertices  

      

   Innumerable formulae have been developed for 

quadrature like Newton cotes formulae and the 

classical Gauss quadrature formulae, because of 

the simplicity of the problem and its practical 

value. The traditional Gaussian quadrature rules 

are greatly productive when the capacities to be 

coordinated are very much approximated by poly-

nomials; however, in the event that the integrands 

are unique in relation to polynomials they don't 

perform well. Standard practice has been to use 

Gauss integration by Stroud [1996], Cattani [1990] 

and Rathod [1996, 1998].  Since such principles 

utilize a minimal number of test focuses to accom-

plish a coveted level of exactness. This economy 

is imperative for productive firmness lattice esti-

mations. The generalization, of the traditional Ga-

uss quadrature rules, called as generalized-Gau-

ssian quadrature (GGQ) are introduced by Karlin 

and Studden (1966) and numerical scheme for the 

construction of GGQ was presented by Ma et. al., 

(1996). Also generalized Gaussian quadrature 

method over (0, 1) introduced by Ma et al., in 

[1996] has been verified to give more precise 

results than the traditional Gauss Legendre quad-

rature rules over (-1, 1) as in [2005, 2007] and 

also it is applicable for functions with end point 

singularities. Rathod et al., {20005] proposed 

Gauss-Legendre quadrature rule for the numerical 

integration of an arbitrary function over the stan-

dard tetrahedron by transforming the standard tet-

rahedron into a standard 2-cube. As Rathod et al., 

http://www.pjbt.org/
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[2007] has used a product rule based on zeros and 

weight coefficients of the Gauss Legendre - Gauss 

Jacobi quadrature rules, using one of the parame-

tric transformations to transform a standard tetra-

hedron into a standard 1-cube, as in Fig.2. Also, 

Rathod et al., in 2011 has proposed another para-

metric transformation to transform a standard tetr-

ahedron into a standard 1-cube and have applied 

the product rule for numerical integration which 

has a higher precision.  
 

 
Fig.2 Tetrahedron transformed into 2-Cube 

   Rathod et al., [2005, 2011] have evaluated the 

numerical integration of arbitrary functions apply-

ing Gauss Legendre quadrature rules, over the p3 

tetrahedral regions using one of the parametric 

transformations to transform a standard tetrahe-

dron into a standard 1-cube by discretization of 

standard tetrahedral region Vi into p3 tetrahedral 

regions each of which has volume equal to  

36

1

p

units. 

   In reference, Mamatha and Venkatesh [2015], 

have evaluated the numerical integration of arbi-

trary integrands by decomposing standard tetrahe-

dral region T(0,1) into four hexahedral element 

regions H(-1,1) using Gauss quadrature rules. 

With minimum number of divisions of the tetrahe- 

dral region they have shown the convergence of 

integral values to exact solutions, and also the 

number of computations and errors are reduced 

drastically.   

    In this paper we try to obtain the numerical 

integration formulas over arbitrary linear tetrahe-

dron by using two different transformations to 

transform the integral over a linear tetrahedron to 

a standard 1-cube element, implementing genera-

lized Gaussian quadrature rules and also obtain 

the integral values of some arbitrary functions 

without discretization of arbitrary linear tetrahe-

dron region into many tetrahedral regions. Integral 

values obtained using these quadrature nodes and 

weights for different integrands are tabulated in 

this paper and it is established that these quadrat-

ure rules give better accuracy for the integrands, 

including with end point singularities, with mini-

mum computational time and cost.  

The problem can be defined mathematically as 

evaluation of the integral defined in (1):  

  
− −−

=

1

0

1

0

1

0

),,(

x yx

dzdydxzyxfI                          (1) 

by transforming the triple integral over linear 

tetrahedron into the integrals over a standard 1-

cube. 

I. Volume Integration Over an Arbitrary Tetrahe-

dron by Transforming Into a Standard 1-Cube 

     In the reference article by Rathod [2005], the 

author has applied Gauss-Legendre quadrature 

rule for numerical integration over the standard 

tetrahedron by transforming the standard tetrahe-

dron into a standard 2-cube. And in [2007] they 

have applied the same method by discretizing the 

tetrahedral region into p3 tetrahedral regions. In 

another article of Rathod [2007, 2011], he has 

applied the Gauss Legendre- Gauss Jacobi quadra-

ture product rules to evaluate integrals over arbi-

trary tetrahedral regions by an affine-transforma-

tion to transform an arbitrary tetrahedron in 

),,( ZYX  
space into an orthogonal tetrahedron 

),,( zyx  and then transforming the tetrahedral 

region into a standard 1-Cube ( )1,,0 321   . 

In this paper, we use generalized Gaussian qua-

drature rules to evaluate integrals over arbitrary 

tetrahedral regions by transforming the orthogonal 

tetrahedron into a standard 1-cube 

( )1,,0 321   by using two parametric represe-

ntations as in (5) and (8) and show that the numer-

ical evaluation of integrands converges faster with 

minimum computational time and cost.  

A. Volume Co-ordinates for an Arbitrary Linear 

Tetrahedron        

    For transforming the tetrahedral region into a 

standard 1-Cube, the limits of integration have to 

be mapped to ( )1,,0 321    in ( )321 ,,   
space. This is achieved by transforming the 

),,( zyx
 
to the natural coordinates  

( )321 ,,  using the equation 

4321

44332211

44332211

44332211

NNNNN

zNzNzNzNz

yNyNyNyNy

xNxNxNxNx

+++=

+++=
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(2) 

     

     The ratio of the volumes of tetrahedron based 

on an internal point C, as in Fig.3, in the total vol-

ume element is identified as the physical nature of 

the coordinates.  

,
1234

234
1

Cofvolume

Cofvolume
N =

  

,
1234

134
2

Cofvolume

Cofvolume
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123
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Cofvolume

Cofvolume
N =  

     The ( )zyx ,,  coordinates transformed to natu-

ral coordinates ( )321 ,,  using the (2), 

;;; iiiiii zNzyNyxNx ===
                          

(3) 

,14321 =+++ NNNN where ( )iii zyx ,,
 

are the 

coordinates of vertex of the tetrahedron     
                   

 

B. Affine Transformation for an Arbitrary Linear 

Tetrahedron 

  
The transformation between the ),,( zyx to 

the natural coordinates ( )321 ,,   in (3) is rewri- 

tten by substituting ,,, 332211  === NNN  as  

4343242141
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zzzzy
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xxxxx
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                      (4) 

with 

jijijijijiji zzzyyyxxx −=−=−= ;;                       
 

     By the parametric representation in (4), we 

have for the volume element (1), represented as  

( ) ( ) ( )( )
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=

V
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−−−
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−−−

=
,                 V 

is the unit orthogonal tetrahedron spanned by the 

vertices ( ) ( ) ( ) ( ) .1,0,0,0,1,0,0,0,1,0,0,0   

II. Transformation of Integrals Over an arbi-

trary  Tetrahedron into Integrals Over a 

Standard 1-Cube 

     In this section, we transform the triple integral 

of the form in (1) into the integrals over the 

standard    1-Cube ( )1,,0 321   by using 

two parametric transformations.  
 

Transformation-I: Consider the integral in (1), let 

us write the parametric representation as in (5) 

;)1(,)1(, mlznmlylmnx −=−==
           

(5)
                     

where 1,,0  nml , such that it completely 

describes the region 

.0,0,0,1 =++ zyxzyx
 

Then the differential volume and the determinant 

of the Jacobian are  
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    Thus, the volume integral in (1) is transformed 

over a standard 1-cube by using the 

Transformation-I, as in (5), is given by (7), 

( ) dldmdnmlmlnlmlmnfI 2
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Transformation-II: Consider the integral in (1), let 

us write the parametric representation as  
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(8) 

where  
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(9)  

     Hence the volume integral in (1) is transformed 

over a standard 1-cube by using the transforma-

tion-2, as in (8), is given by (10). 

 
        

( )  .)1()1(1)(1(,)1(,

1

0

1

0

1

0

2

   −−−−−= dldmdnmlmlnlmlfI        (10) 

III. Numerical integration:  

     One can now apply generalized Gauss quadra-

ture rule to evaluate integrals in 7 and 10  
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where 

( ) ;)1()1(1)(1(,)1(,),,( 2 mlmlnlmlfzyxh mmm −−−−−=

( );)1(,)1(,),,( mlnlmlmnfzyxg mmm −−= are 

abscissas and ;)1()1( 2

kjim wwwmlk −−=  

,2

kjim wwmwlc =
 
are weight coefficients of gen-

eralized Gauss quadrature rule  and N is the num-

ber of sampling points. 

     Integral values in (11) and (12), obtained using 

these generalized Gaussian quadrature rules nodes 

and weights for different integrands based on ava-

ilability of analytical solutions are tabulated and 

the effectiveness of the parametric transformation 

of the proposed method is tested. 

 Numerical Examples: We consider some typical 

integrands whose integral values are known on 

standard tetrahedral domain and with the exact 

value of the integrals [2005, 2007]. 
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6               (18) 

    We evaluate the numerical solution to the inte-

grals in (11) and (12) considering the arbitrary int-

egrands in (13, 18), by applying generalized Gau-

ssian quadrature (GGQM) integration method whose 

results are given in Appendix (Table–I). It is obse-

rved that the computed results (GGQM) are conve- 

rging faster than the Gauss-Legendre quadrature 

(GLQM) numerical method in 2005, 2007 and as 

compared to the Gauss-Legendre and Gauss-Jac-

obi quadrature (GLJQM) numerical method in 

2007 and 2011 without discretization of tetrahed-

ral regions we are able to obtain the numerical 

results exact up to 15 decimal places. As in (18), 

we have computed the numerical solution to the 

integral with the singularity function, which is not 

computed in the referred articles. 

CONCLUSIONS 

     In this research article, we have evaluated the 

volume integral of an integrand over arbitrary 

tetrahedral region by first transforming into stan-

dard tetrahedron and later by using two different 

transformations we transform standard tetrahedron 

in (x, y, z) space into a standard 1-Cube in (l, m, n) 

space. We have used generalized Gaussian quad-

rature method for the evaluation of the triple 

integral, as in (1). It may be noted that almost all 

the numerical results which we have obtained is 

exact for more than ten decimal values, conver-

ging faster than the numerical results by Rathod 

[2011]. Also, without discretization of tetrahedral 

regions we are obtaining the exact integral values 

as compared to the numerical results in Rathod 

[2005, 2007] by reducing the number of computa-

tions. We observed that the numerical results obt-

ained with Transformation-2 for the integrands are 

more accurate with analytical solutions compared 

to the results obtained with Transformation-1. 
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Appendix 

Table -1

977204406867935.0
)1(

1

22
1 =

+−−
= 

T

dzdydx
zyx

 
Transformation-1 

N 
 

GGQM 
N GLJQM[11] 

GLQM by Rathod[2005] 

P3=63 P3=73 P3=83 

5 0.401433409154618 7 0.431524943273086 0.438056467746589 0.438461566166572 0.438525199025403 

10 0.429349205239327 8 0.432737244267085 0.438494153586623 0.438837020656758 0.438853915428304 

15 0.435393554019928 9 0.434234187958587 0.438800139004454 0.439099456872214 0.439083654085687 

20 0.437634725073964 10 0.433942502667705 0.439022470568174 0.439290122690003 0.439250549614584 

Transformation-2 

N 
 

GGQM 
N 

GLJQM by Rathod and 

Shafiqul[2007] 

GLQM  by Rathod[2007] 

P3=63 P3=73 P3=83 

5 0.440685900461525 7 0.434255520664723 0.440032854640855 0.440156655061396 0.440009086267002 

10 0.440686793510637 8 0.435031208274682 0.440028320026023 0.440152657197482 0.440005515259131 

15 0.440686793509740 9 0.436135693229094 0.440025722427437 0.440150367069788 0.440003469650297 

20 0.440686793509771 10  0.440024154598790 0.440148984820863 0.440002234985244 

571431428571428.0)( 2

1

2 =++= 
T

dzdydxzyx

 
Transformation-1 

N 
 

GGQM 
N 

GLJQM BY 

RATHOD[2011] 

GLQM by Rathod[2005] 

P3=63 P3=73 P3=83 

5 0.142857129401889 7 0.143260558916461 0.142857145351164 0.142857144311217 0.142857143768345 

10 0.142857142856268 8 0.142857190262350 0.142857143904410 0.142857143467725 0.142857143239767 

15 0.142857142857140 9 0.142857169357884 0.142857143341263 0.142857143139396 0.14285743034018 

20 0.142857142857143 10 0.142488864056452 0.142857143098771 0.142857142998018 0.142857142945423 

Transformation-2 

N 
 

GGQM 
N 

GLJQM by Rathod and 

Shafiqul[2007] 

GLQM  by Rathod[2007] 

P3=63 P3=73 P3=83 

5 0.142857116529782 7 0.142857173245610 0.142857143720264 0.142857143360363 0.142857143172488 

10 0.142857142852559 8 0.142857152996523 0.142857143208842 0.142857143062192 0.142857142985637 

15 0.142857142857117 9 0.142857152535564 0.142857143016253 0.142857142949907 0.142857142915274 

20 0.142857142857143 10  0.142857142935285 0.142857142902701 0.142857142885692 
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00002000000000.0)( 2

1

3 =++= 
−

T

dzdydxzyx

 
Transformation-1 

N GGQM 

 

N GLJQM BY 

RATHOD[2011] 

GLQM by Rathod[2005] 

P3=63 P3=73 P3=83 

5 0.199999899961675 7 0.200674960303585 0.199999243473790 0.199999485415138 0.199999631466358 

10 0.199999999859248 8 0.199992401298026 0.199999591454682 0.199999722109779 0.199999800981524 

15 0.199999999997098 9 0.199995417776173 0.199999764024885 0.199999839491058 0.199999885047250 

20 0.199999999999820 10 0.199607363698843 0.199999856139718 0.199999902147048 0.199999929920004 

Transformation-2 

N GGQM 

 

N GLJQM by Rathod 

and Shafiqul[2007] 

GLQM  by Rathod[2007] 

P3=63 P3=73 P3=83 

5 0.200000275082718 7 0.199995955453215 0.199999924909213 0.199999948923666 0.199999963420324 

10 0.200000002496569 8 0.199996036650226 0.199999960197440 0.199999972926523 0.199999980610609 

15 0.200000000068057 9 0.199997676631442 0.199999977310639 0.199999984566824 0.199999988947120 

20 0.200000000004693 10  0.199999986302052 0.199999990682733 0.199999993327192 

 

901811319023268.0)sin( 42
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T

dzdydxzyx

 
Transformation-1 

N GGQM 

 

N GLJQM BY 

RATHOD[2011] 

GLQM by Rathod[2005] 

P3=63 P3=73 P3=83 

5 0.131888262041085 7 0.132384495652103 0.131902326890182 0.131902326890182 0.131902326890182 

10 0.131902326893353 8 0.131902317683351 0.131902326890181 0.131902326890181 0.131902326890181 

15 0.131902326890182 9 0.131902326175840 0.131902326890181 0.131902326890182 0.131902326890181 

20 0.131902326890182 10 0.131643059515503 0.131902326890182 0.131902326890182 0.131902326890182 

Transformation-2 

N GGQM 

 

N GLJQM by Rathod 

and Shafiqul[2007] 

GLQM  by Rathod[2007] 

P3=63 P3=73 P3=83 

5 0.131901021445645 7 0.131902324856213 0.131902326890182 0.131902326890182 0.131902326890182 

10 0.131902326890124 8 0.131902314247159 0.131902326890181 0.131902326890181 0.131902326890181 

15 0.131902326890182 9 0.131902325772292 0.131902326890181 0.131902326890181 0.131902326890181 

20 0.131902326890182 10  0.131902326890182 0.131902326890182 0.131902326890182 
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Transformation-1 

N GGQM 

 

N GLJQM BY 

RATHOD[2011] 

GLQM by Rathod[2005] 

P3=63 P3=73 P3=83 

5 0.020834525016257 7 0.020916599226093 0.020833333333328 0.020833333333333 0.020833333333333 

10 0.020833333335968 8 0.020833329020945 0.020833333333333 0.020833333333333 0.020833333333333 

15 0.020833333333333 9 0..020833332878624 0.020833333333333 0.020833333333333 0.020833333333333 

20 0.020833333333333 10 0.020806898469793 0.020833333333333 0.020833333333333 0.020833333333333 

Transformation-2 

N GGQM 

 

N GLJQM by Rathod 
and Shafiqul[2007] 

GLQM  by Rathod[2007] 

P3=63 P3=73 P3=83 

5 0.020833253744181 7 0.020833332245126 0.020833333333170 0.020833333333331 0.020833333333333 

10 0.020833333333470 8 0.020833332255096 0.020833333333333 0.020833333333333 0.020833333333333 

15 0.020833333333333 9 0.020833333237911 0.020833333333333 0.020833333333333 0.020833333333333 

20 0.020833333333333 10  0.020833333333333 0.020833333333333 0.020833333333333 

 

5421129110.00118021 )sin()sin(3

6 == 
T

dzdydxzyx 

 
N GGQM 

Transformation-1 

GGQM 

Transformation-2 

5 0.001174767313633 0.001172338527940 

10 0.001180215414563 0.001180215405319 

15 0.001180215421129 0.001180215421129 

20 0.001180215421129 0.001180215421129 

 
 

 

 

 

 

 


