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ABSTRACT 
          Trajectory patterns discovery is useful in learning interactions among moving objects. Different types of trajectory 
patterns such as flock patterns, convoy patterns and swarm patterns have been proposed earlier, but methods were developed 
for mining only a particular type of trajectory patterns. The pattern discovery becomes difficult and inefficient as users typically 
may not know which types of trajectory patterns are present hidden in their data sets. One main observation is that trajectory 
patterns can be arranged based on the strength of temporal tightness. In this paper, a framework of mining unifying trajectory 
patterns also known as UT-patterns based on varying temporal tightness is proposed. The framework consists of three phases: 
initial pattern identification, granularity adjustment, classification and visualization. The preprocessing is done by using 
trajectory clustering algorithm and a set of initial UT-patterns identification are done in the first phase by using the spatio-
temporal datasets. The granularity adjustments i.e., levels of detail are adjusted by drill down and roll up to detect other types of 
UT-patterns in the second phase. Classifications of the UT-patterns are done using the Trajectory classification algorithm in the 
third phase. Visualization of the classified UT-patterns is done in the final phase according to the patterns obtained as the result 
of classification.

Keywords— Trajectory patterns, temporal tightness, UT-patterns.

I. INTRODUCTION
   Rapid enhancement in the modern positioning 

technology enables large scale collection of various 
moving objects data such as animal movement data, 
vehicle movement data, and mobile tracking data. The 
data are usually collected from satellite, sensor, and 
other wireless technologies. For instance, animal scien-
tists attach sensor tags on animal to track their move-
ment and mobile phones have enabled the tracking of 
almost all kind of data.

The groups of object that move show both 
synchronous and asynchronous movement patterns. 
Synchronous movement patterns are shown in moving 
objects that often interact with each other: for example, 
a set of objects moving together or set of moving 
objects that chase another set of moving objects with 
some time delay. On the other hand, asynchronous 
movement patterns: for example,a set of objects moving 
may follow the same path each year. Such trajectory 
patterns are collectively called as unifying trajectory 
patterns (UT-patterns) i.e. unifying trajectory pattern 
that shows different temporal tightness. Traje-ctory 
patterns are the path or trace of moving object patterns. 
In general Trajectories are sequences that contain the 
spatial and temporal information about move-ments. 
Trajectories are usually given as spatiotemporal (ST) 
sequences: <(x0, y0, t0)… (xn, yn, tn)>. Where xi, yi is the 
position coordinate relative to the origin and ti is the 
time stamp for the position information.

UT-patterns are defined informally as set of moving 
objects that are nearly related in terms of location, time 
or both. An example of UT-patterns can be explained in 
deer migration as a herd of deer that move together at 
the same time and thus they are close to each other. 
Another example is wolf predatory behavior on wild 
hoofed mammals where the wolves chase prey over 
long distance in open space.

Majority of applications can benefit from the UT-
patterns mining. For example, in animal trajectories, 

zoologists can learn migration or movement patterns of 
animals such as deer and wolf. In battleship trajectories, 
commanders can discover movement of the enemy. In 
soccer-player trajectories, attack strategies of the 
opponent team can be guessed by the coaches and so on.

Notable efforts have been devoted to trajectory 
patterns discovery in data mining and computational 
geometry. A list of well-known studies includes flock 
patterns [11], convoy patterns [2], swarm patterns [18] 
[19], and sub-trajectory clusters [7]. Observed that each 
of them corresponds to just one type in a broad range of 
trajectory patterns, and earlier methods have been 
developed only to handle one specific type. In some of 
the trajectory patterns both spatial and temporal 
constraints are considered. But these are not considered 
by the existing techniques. This limitation make 
discovery of pattern inefficient since users may not 
know which types of trajectory patterns are present or 
hidden in their data sets. For example, a data set may 
contain sets of moving objects that arrived at various 
locations within various time intervals. These are mined 
to identify the interesting patterns. 

One best way of classifying existing trajectory 
patterns is to consider the rigidity of temporal restrict- 
tions on the patterns. The observation motivates the 
study which develops a framework that have the capa-
bility of navigating the patterns at all different levels of 
temporal constraints.

In summary, the major contributions of this paper are 
given as follows:
 To develop a framework of mining trajectory 

patterns based on varying temporal tightness, 
which classify the UT-patterns into three types 
depending on the strength of temporal 
constraints.

 To present an algorithm TRACLUS [7] that is 
highly efficient for data preprocessing.
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 To present an algorithm for discovering a good 
set of initial UT-patterns where both spatial and 
temporal constrains are checked.

 To present an algorithm to find remaining UT-
patterns using the reference movement during 
initial pattern identification.

 To improve the efficiency of the unifying 
trajectory pattern mining using trajectory 
classification algorithm [9] and visualizing the 
results based on the classified result using Google 
map [3] or Google earth [4].

II. RELATED WORK
Phan Nhat Hai et al proposed GeT Move: a parameter 

free unifying incremental spatiotemporal patternmining 
approach for extracting different kinds of patterns i.e. 
[11,2,18] and [7]. Part of this approach is based on an 
existing state-of-the-art algorithm that is extended to 
take advantage of well-known frequent closed dataset 
mining algorithms. In order to use it, first redefine 
spatio-temporal patterns in a dataset context. Secondly, 
a spatio-temporal matrix is proposed to describe original 
data and then an incremental frequent closed dataset-
based spatio-temporal patternmining algorithm to ext-
ract patterns. The main idea is to rearrange the input 
data based on nested concept so that incremental GeT 
Move can automatically extract patterns efficiently 
without parameters setting.Object movements are quite 
complex and therefore data can be unclean or noisy. So 
preprocessing is needed to collect and clean the raw 
data and to interpolate missing points in [15].

Zhenhui Li et al proposed a moving object data 
mining system, MoveMine that include multiple data 
mining functions [6,17]. Two moving object pattern 
mining functions are newly developed they are: (1) 
periodic behavior mining and (2) swarm pattern mining. 
In periodic behaviors mining a reference location-based 
method is developed, which initially detects the refe-
rence locations, discovers the periods present in comp-
lex movements, and then finally find periodic patterns 
by hierarchical clustering. In swarm patterns mining a 
highly efficient technique is developed that uncover 
flexible moving object clusters by relaxing the well 
known enforced collective movement constraints in 
[19].

Jae-Gil Lee et al [8] proposed a partition and detect 
framework for trajectory outlier detection, which 
partitions a trajectory into a set of line segments, then 
detects outlying line segments for trajectory outliers. 
The primary advantage of the framework is to detect 
outlying sub-trajectories from a trajectory database. 
Based on this partition and detect framework, a 
trajectory outlier detection algorithm TRAOD is 
developed. The algorithm consists of two phases: 
partitioning and detection. For the first phase, a two-
level trajectory partitioning strategy is proposed that 
ensures both high quality and efficiency. For the second 
phase, a hybrid of the distance-based and density-based 
approaches is proposed. Experimental results show that 
TRAOD can correctly detects outlying sub-trajectories 
from real trajectory data in [8].

Yan Huang et al proposed a framework for mining 
sequential patterns from spatio-temporal event datasets. 
The main part of the framework is the use of a sequence 
index as the significance measure for spatio-temporal 
sequential patterns. It defines a density ratio for two 
sequences and then extends it to sequence index for 
longer sequences. In addition, statistical interpretation is 
proposed for the proposed sequence index. Then a novel 
algorithm called Slicing-STS-Miner for sequential 
pattern mining is applied onto the spatio-temporal 
datasets. This algorithm handles the challenges by using 
the sequence index which not guarantees the downward 
closure property. Slicing-STS-Miner uses the temporal 
slicing to partition the dataset as overlapping slices 
according to time when the number of events is very 
large to be processed in memory. It processes each time 
slice separately and uses the unidirectional property of 
time to recover the sequential patterns across slice 
boundaries with low cost. Algebraic costs of the 
algorithms is analyzed and the performance of the 
proposed algorithm experimentally evaluated against a 
simple algorithm called STS-Miner, which uses the 
weak monotone property of the sequence index on both 
synthetic and real-world datasets in [16].

The classification of the trajectory patterns by 
considering the temporal tightness includes flock [11], 
convoys [2], or moving clusters [14], at one extreme 
where objects move together at the same time. A flock 
[11] in a time interval I, where the duration of I at least 
k, consists of at least m entities such that for every point 
in time within I, there exist a disk of radius r that 
contains all the m entities. The convoy [2] is an 
extension of the flock using the concept of density-
based clustering. A moving cluster [14] is a sequence of 
(snapshot) clusters c1, c2 … ck such that for each 
timestamp i (1 ≤ i < k), ci and ci+1 share a sufficient 
number of common objects.

Figure 1 A spectrum of existing trajectory patterns [10]. 

Time-relaxed trajectory joins [12] or hot motion 
paths [1] are placed at in between the extremes where 
objects may follow other objects with some time delay. 
Two trajectories are time-relaxed joined if there exist 
time intervals of the same length δt such that the 
distance between the locations of the two trajectories 
during these intervals is no more than a spatial threshold 
ε, and the relative matching between the two trajectories 
occurs within some time distance. A hot motion path is 
a route that is frequently followed by multiple objects 
within a tolerance margin ε in the last W timestamps.

Sub-trajectory clusters [7] is a trajectory is parti-
tioned into a set of line segments, and these trajectory 
partitions are grouped as a cluster according to their 
spatial similarities only. That is, a sub-trajectory cluster 



Pak. J. Biotechnol. Vol. 13 (special issue on Innovations in information Embedded and Communication 
Systems)  Pp. 178 - 183 (2016)

180

is a set of trajectory partitions which are very close to 
each other and are heading to a similar direction. Here, 
temporal information is not considered. Since UT-
patterns are defined differently from the existing 
patterns, it does not really subsume or incorporate any 
of the existing patterns. The most prominent advantage 
of it is that it can fall into any of the three types in 
Figure 1, whereas existing patterns may fall into only 
one of the three types. Contrary to the patterns in Figure 
1, there are several other patterns that do not force 
strong spatial constraints. For example, a swarm [18] 
[19] is a group of moving objects that contains at least 
mino individuals who are in the same cluster for at least 
mint timestamp snapshots. Since some moving objects 
are allowed to leave the cluster for some period of time, 
the intermediate paths between timestamps are not very 
important, pretty much different from a UT-pattern.
III. PROPOSED FRAMEWORK

The proposed framework consists of five different 
phases: 1) Initial pattern identification, 2) Granularity 
adjustments, 3) Classification and Visualization. The 
input to the framework is the set of spatio-temporal 
trajectory datasets. These spatio-temporal datasets [5] 
are preprocessed by using the trajectory clustering 
algorithm of partition and group framework [7]. As 
indicated by the name the framework consists of two 
phases: partitioning and grouping as in Figure 2. 

Figure 2 Example of Trajectory Clustering in partition and 
group framework [7].

In partitioning phase each trajectory is optimally 
partitioned into a set of line segments. These line 
segments are provided to the next phase. The grouping 
phase group similar line segments into a cluster. Here, a 
density-based clustering method is exploited. The 
advantage of the partition-and-group framework is the 
discovery of common sub-trajectories from a trajectory 
database. This is the exact reason for partitioning a 
trajectory into a set of line segments.

The input of the framework is a set of trajectories I 
= {TR1,…,TRnumtra}. A trajectory is a sequence of the 
locations of an object at each timestamp and is denoted 
as TRi = p1p2 . . . pj . . . pleni

. Here, pj (1 ≤ j ≤ leni) is a 
point (xj; yj; tj) in a three dimensional space, where (xj; 
yj) indicates the location of the object at the time tj. The 
length leni of a trajectory can be identically different 
from those of other trajectories. A trajectory pc1pc2 . . . 

pck (1 ≤ c1 < c2 < …< ck ≤ leni, where ck = ck-1 + 1) is 
called a sub-trajectory of TRi. A trajectory partition is a 
line segment pipj (i < j), where pi and pj be the points 
chosen from the same trajectory. The output of first two 
phases is a set of UT-patterns O = {UT1,…,UTnumpat}. A 
UT-pattern is a set of trajectory partitions with a 
reference movement. A trajectory partition which 
belongs to the same UT-pattern is close in terms of 
location and time according to a similarity function. A 
reference movement is the line segment, where the first 
point is the starting location and time of the overall 
movement, the second point is the ending location and 
time. 

In summary, a UT-pattern is UTi = (Ri, Li), where 
Ri is the reference movement, and Li the set of trajectory 
partitions. This output is given as input to the trajectory 
classification algorithm that uses the trajectory based 
clustering technique. The procedure of trajectory-based 
clustering is similar to the traclass framework proposed 
by Lee et al., [9]. The partition-and-group framework 
was extended for classification purposes such that the 
class labels are incorporated into clustering.

The classified outputs of various trajectory patterns 
are finally visualized by using the Google earth or 
Google map. The input to the visualization phase is the 
UT-patterns which are classified according to its 
temporal tightness. To overcome the limitation present 
in the existing classification system the UT-patterns are 
broadly classified as time restricted, time delayed and 
time unrestricted patterns in figure 3.

Figure 3 Three Types of pattern classification similar to [10].

Algorithm 1: UT-pattern mining
Input: A dataset of spatio-temporal trajectories I = 
{TR1,…, TRnumtra}
Output: A set of classified UT-patterns visualized using 
Google earth or Google map application programming 
interface.
1: /* Phase 1: Initial pattern identification as in [10]*/
2: /* Perform sub trajectory clustering over I for pre-
processing the spatio-temporal datasets [5] using 
partition and group framework [7].*/
3: /* Partitioning Phase */
4:  for each (TR ϵ I) do
5:   Execute Approximate Trajectory Partitioning;
6:   Get a set L of line segments using the result;
7:   Accumulate L into a set D;
8:    /* Grouping Phase */
9:    Execute Line Segment Clustering for D;
10:  Get a set O={C1,..,Cnumclus} of clusters as the result;
11:  Get a set Call of sub-trajectory clusters;
12:   for each C ϵ Call do



Pak. J. Biotechnol. Vol. 13 (special issue on Innovations in information Embedded and Communication 
Systems)  Pp. 178 - 183 (2016)

181

13:   /* Algorithm 2 */
14:   Execute Initial Pattern Identification over C;
15:   Get a set P of UT-patterns as the result;
16: Accumulate P into a set Pall;
17: end for
18: /* Phase 2: Granularity Adjustment */
19: /* Algorithm 3 */
20:  Execute Pattern Forest Construction over Pall [10];
21:   Return the set of UT-patterns in the forest;
22: /*Phase 3: Classification Visualization of UT-

patterns*/
23:  Classify the UT-patterns into the three types based 

on its temporal cohesion [10];
24: The UT-patterns that move together are labelled as 

time restricted patterns;
25:  UT-patterns that move together with some time 

delay are labelled as time delayed patterns;
26: The UT-patterns that doesn’t follow any time 

restrictions and move as it is in the same trajectory 
partition are labelled as time unrestricted.

27: Visualization of the classified UT-patterns in 
Google earth [3] or Google map [4];
The phase of initial pattern identification is proce-

ssed in two steps. First, sub-trajectory clusters in the (X, 
Y)-space are discovered using the partition-and-group 
framework [7] without temporal constraints conside-
ration. A sub-trajectory cluster is a set of trajectory 
partitions that move close together in a same direction. 
Then, for every sub-trajectory cluster, initial UT-
patterns in the (location, Time)-spaces are retrieved by 
considering both spatial and temporal constraints. The 
location of the trajectory partitions within a particular 
sub-trajectory cluster can be represented using single 
dimension since their directions are very similar. The 
advantage of this stepwise approach is to improve 
efficiency for the following reasons. First, the dimen-
sions are reduced from three to two. Second, the search 
space is reduced to a certain sub-trajectory cluster, not 
the entire dataset.

Algorithm 2: Initial pattern identification
Input: A set L of trajectory partitions in a cluster C
Output: A set P of initial UT-patterns
1: 𝕃 ⇐ L, R1 ⇐ DeriveRefMovement(𝕃1);
2: P ⇐ {(R1, 𝕃1)};
3: repeat
4: Choose the mth UT-pattern from P, where

m = 
   argmax

(𝑅𝑚,  𝐿𝑚)ϵ 𝑃
𝐶(𝑅𝑚, 𝐿𝑚)

5: /*Split the mth UT-pattern into two splits*/
6: Choose the pair of trajectory partitions, where

(Lp, Lq) = 
   argmax

𝐿𝑝,𝐿𝑞ϵ 𝐿𝑚

𝑑𝑖𝑠𝑡(𝐿𝑝,𝐿𝑞);

7: /*Distribute t-partitions of 𝕃m into two*/
8: /*Derive a reference movement for each split*/

9: 𝑅
𝑝
𝑚 ⇐ DeriveRefMovement(𝐿 𝑝

𝑚);

10: 𝑅
𝑞
𝑚 ⇐ DeriveRefMovement(𝐿 𝑞

𝑚);
11: /*Replace the mth pattern by the new ones*/
12: /*Check if L(H) + L(D|H) decreases*/
13: if MDL(P’) < MDL(P) then

14: P ⇐ P’;
15: end if
16: until MDL(P’) ≥ MDL(P)
17: Return the set P of initial UT-patterns;
18: function DeriveRefMovement(𝕃k)
19: /* Consider each t-partition as a candidate */
20: /* Find the one that minimizes the code length */

21: Return the sth candidate 𝑅
𝑠
𝑘 , where

s =
   argmin

𝑅𝑠
𝑘ϵ𝑅𝑘 

𝐶(𝑅𝑠
𝑘,𝐿𝑘)

;
22: end function

The initial pattern detection or identification 
algorithm uses the MDL cost function [13]. The MDL 
cost consists of two components [13]: L(H) and L(D|H). 
Here, H is the hypothesis and D the data. The two 
components are informally stated as: L(H) is the length 
of the description of the hypothesis represented in bits; 
and L(D|H) is the length of the description of the data 
when encoded with the use of the hypothesis repre-
sented in bits. The best hypothesis H to explain D is the 
one that minimizes the sum of L(H) and L(D|H). The 
MDL principle fits very well in this problem. H corres-
ponds to a set of UT-patterns, and D the set of trajectory 
partitions. As a result, finding a good set of UT-patterns 
translates to finding the best hypothesis using the MDL 
principle.

Even though the initial set best captures the 
underlying patterns of trajectory partitions based on the 
MDL cost, some users may still need to find smaller 
(finer) or larger (coarser) patterns. This motivates the 
phase of granularity adjustment. Split and merger of 
UT-patterns are semantically analogous to drill down 
and roll up [10] widely used in OLAP. However, the 
operations are more complex since the drill-down and 
roll-up dimensions are not specified by the users but are 
automatically defined to be either location or time. This 
choice is clearly formulated using the almost same 
information-theoretic formula [13] as in the first phase. 
Moreover, as far as known, there has been no work for 
automatically building concept hierarchies for spatio-
temporal patterns.

Drill down is done only if the split decreases the 
MDL cost as Algorithm 2. Its main objective is to 
derive multiple time restricted (or smaller time delayed) 
patterns from a time delayed pattern. In other words 
zoom in is performed. The drill down dimensions is 
selected automatically so as to minimize the MDL cost 
[13]. Roll-up is the reverse operation of drill-down.
Algorithm 3: Granularity Adjustment
Input: A set Pall of initial UT-patterns
Output: A pattern forest FR
1: FR ⇐ Pall, Q ⇐ Pall; /*Q is a queue*/
2: /*1. Drill Down*/
3: while Q ≠ Ø do
4:  Pop a UT-pattern UTi from Q;

5:   if UTi can be split into 𝑈𝑇1
𝑖  and 𝑈𝑇2

𝑖  then

6:    Push 𝑈𝑇1
𝑖  and 𝑈𝑇2

𝑖   into Q;
7:    /* Update the pattern forest */
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8:     Add two vertexes for 𝑈𝑇1
𝑖  and 𝑈𝑇2

𝑖  into FR;

9:   Add two edges for (UTi,
𝑈𝑇1

𝑖) and (UTi,
𝑈𝑇2

𝑖) into FR;
10:  end if
11: end while
12: /* 2. Roll Up */
13: /* Pc is a set of UT-patterns in the cth cluster */
14: for each Pc ⊆ Pall do
15:     for each pair of UTi ϵ Pc and UTj ϵ Pc do
16:    if UTi and UTj can be merged into UTij then
17:     Add UTij into Pc;
18:    /* Update the pattern forest */
19:    Add one vertex for UTij into FR;
20:   Add two edges for (UTij UTi) and (UTij,UTj) into FR;
21:    end if
22:    end for
23:   end for
24: Return the pattern forest FR;

The classification and visualization of the UT-
patterns is done in the final phase i.e. the third phase of 
framework. The visualization can be done by plotting 
the UT-patterns on the 2D plane or embedding into 
other visualization tools (e.g., Google map and Google 
earth).The output written in Google map or Google 
earth format can help users to explore the framework 
results. Furthermore, users can also compare the results 
of varied datasets to understand the differences between 
object movement behaviors. Moreover, different 
patterns can be visualized in the same time on the same 
map.

Figure 4 Architecture of UT-pattern mining framework.

The overall architecture of the framework in Figure 
4 starts with moving object datasets collection. The 
datasets may include animal data, vehicle data or mobile 
data. The datasets are cleaned by preprocessing then 
they are stored in moving object database which may 
include both spatial and temporal attributes. Group of 
these datasets are given as input in the form of 
trajectories to initial pattern identification. The output 
obtained in this phase is given as input to granularity 
adjustment. Then the output of granularity adjustment 
can be used for classification. Finally the visualized 
results of UT-patterns can be used for applications such 
as animal migration study, ecological analysis, mobility 
management, traffic analysis, planning and control etc.
IV. PERFORMANCE ISSUES AND MEASURES

The analysis of the issues which are present in the 
performance of the framework is calculated based on 
the computational time and accuracy to the size of the 
datasets and UT-patterns.

Figure 5 Performance based on number of datasets used 
to the computational time.

The time of computation increases as the number of 
datasets tclustering increases linearly, whereas tinitial+forest 
exhibits quadratic growth as the data size increases is 
shown in Figure 5. This quadratic growth will decreases 
as the degree of parallelism increases using more CPU 
cores. Since initial pattern receives only the trajectory 
partitions present in clusters, processing time is affected 
by the proportion of trajectory partitions belonging to 
clusters.

Figure 6 Performance based on number of UT-patterns 
obtained to the accuracy of classification.

The graph in Figure 6 shows the effect of the 
number of trajectories per cluster on accuracy. 
Intuitively, a larger number of trajectories per cluster 
imply stronger support for the existence of patterns. 
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When the number of trajectories was about 500, the 
accuracy was nearly close to 100 percent until number 
of UT-patterns become more than that. This property of 
handling larger clusters efficiently is indeed desirable in 
the big data era. Experiments using real-world spatio-
temporal datasets [5] show that UT-pattern mining 
easily discovers various types of trajectory patterns.

V. CONCLUSION
A framework for mining unifying trajectory pattern 

based on varying temporal tightness is proposed in this 
paper. Based on this framework the trajectory pattern 
mining algorithm called UT-pattern mining is 
developed. The algorithm first develops sub trajectory 
clusters and some initial patterns along with reference 
movement in the first phase. Then a granularity 
adjustment generates pattern forest by drill down and 
roll up to discover more patterns in the second phase. 
Finally the classification and visualization of the traje-
ctory patterns can be done as time restricted, time 
delayed and time unrestricted patterns efficiently using 
this framework. Many other trajectory mining techni-
ques can also be further added to improve efficiency of 
the UT-pattern mining framework.
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