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ABSTRACT: In the wake of the numerous now-fruitful genome projects, we are 
entering an era rich in biological data. The field of bioinformatics is poised to exploit this 
information in increasingly powerful ways, but the abundance and growing complexity both 
of the data and of the tools and resources required to analyze them are threatening to 
overwhelm us. Databases and their search tools are now an essential part of the research 
environment. However, the rate of sequence generation and the haphazard proliferation of 
databases have made it difficult to keep pace with developments. In an age of information 
overload, researchers want rapid, easy to use, reliable tools for functional characterization of 
newly determined sequences. But what are those tools? How do we access them? Which 
should we use? This review focuses on a particular type of database that is increasingly used 
in the task of routine sequence analysis the so-called pattern database. The paper aims to 
provide an overview of the current status of pattern databases in common use, outlining the 
methods behind them and giving pointers on their diagnostic strengths and weaknesses. 
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Biocomputation: The juxtaposition of 
computation and biology opens up a new 
world of science and technology. Richard 
Feynman characterizes the young and fast 
developing world of computer science as 
follows: “it is like engineering, it is all 
about getting something to do something 
[1]. Viewed from this perspective, the 
scope of research and development at this 
intersection is a vast, two-way street, what 
computer science has to offer to bio-
logical science and biotechnology and 
vice versa. Computational thinking helps 
characterize, predict, and influence the 
dynamics of biological processes from 
molecular to cellular to organ in a way 
that revolutionizes our understanding of 
health and drug design. In turn, under-
standing the architecture and principles of 
natural biological processes and organi-

zation might require new models of com-
putation, which could lead to robustness 
in the design of large-scale software and 
hardware systems, a hitherto elusive goal 
[3,4]. 

Now days, two key areas drive 
this convergence between computation 
and biology. First, the post-genomic cha-
llenge is the creation of computational 
models that characterize a natural living 
cell’s inner workings. We now know how 
to crack an organism’s genetic code 
through sequencing technology. As we 
begin the 21st century, the next major 
challenge is to model the genetic program 
that is executed through gene–protein 
interactions in a way that characterizes the 
spatiotemporal dynamics of cellular 
events. Such models can assist in 
predicting and controlling responses to 
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external agents and in recognizing highly 
selective targets and drug design. The task 
of harnessing the open source 
community’s power to develop models 
for intracellular dynamics, cell to cell 
signaling and even organism organization 
is a Herculean one, perhaps on a par with 
the recently completed national human 
genome project. A DARPA project called 
bio-computation (www.darpa. mil/ito/ 
research) is the latest attempt at this great 
challenge. A key question to address is 
the issue of whether the metaphor of 
circuits and networks is rich enough to 
deal with the amazing subtleties and 
complexities of biological systems [2]. 
Secondly we reach the limits of Moore’s 
law and look beyond silicon for novel 
substrates to perform computations, 
information processing and storage, bio-
molecular mechanisms present potentially 
revolutionary alternative. Code system in 
DNA fragments carry out complex 
information processing with nucleotide 
operations such as ligation, restriction, 
and hybridization in a potentially 
massively parallel fashion. Since Len 
Adleman’s seminal work in 1994, which 
showed the potential of DNA computing 
for complex problems such as the 
traveling salesman problems, impressive 
ideas and developments have emerged 
such as the solution of 6 to 10 variable 
satisfiability problems and tagged DNA 
storage with thousands of elements. 
Although building a DNA Pentium chip is 
still an elusive goal, an area that holds 
much promise is the design of 
computationally driven, precisely eng-
ineered nano-structures that exploit DNA 
self-assembly. The essential idea is to 
produce arbitrary two and three-
dimensional structures from many 
smaller, information rich structures that 
can carry the self-assembly code. Such 

structures can help us to build molecular 
cages for crystallography, layout 
molecular electronic devises, and create 
new materials. As with other new com-
putational substrates such as quantum, 
spin, or molecular electronics, it is simply 
too early to tell where this work will lead 
us. However, there are enough signposts 
pointing to revolutionary capabilities to 
give us optimism about the serendipity in 
discovering new technologies [5,6]. 
INTRODUCTION: There are hundreds 
of databanks around the world housing 
information those floods from the genome 
projects. The endeavour to store and 
analyze these vast quantities of data has 
required increasing levels of automation. 
However, automation carries a price. For 
example, although software robots are 
essential to the process of functional 
annotation of newly determined seque-
nces, they pose a threat to information 
quality because they can introduce and 
propagate misannotations. Although the 
curators strive to improve the quality of 
their resources, databases nevertheless 
carry the indelible scars of time and are 
far from perfect. To get the most current 
biological databases it is thus important to 
have an understanding both of their 
powers and of their pitfalls. 

To characterize a new sequence, 
the first step usually involves traveling a 
sequence database with tools such as 
BLAST2 or FASTA.3. Such searches 
quickly reveal similarities between the 
query and a range of database sequences. 
The trick then lies in the reliable inference 
of homology (the verification of a 
divergent evolutionary relationship) and 
from this, the inference of function. 
Ideally, a search output will show 
unequivocal similarity to a well-
characterized protein over the full length 
of the query, providing sufficient 
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information to make a sensible diagnosis. 
Sometimes, however, an output will 
reveal no significant hits or, more 
commonly, will furnish a list of partial 
matches to diverse proteins, many of 
which are un-characterized, or possess 
dubious or contradictory annotations [4]. 
There are several reasons why such 
searches might not give direct answers. 
For example, the growth of sequence 
databases and their population by greater 
numbers of poorer-quality partial 
sequences makes it increasingly likely 
that high-scoring matches will be made to 
a query simply by chance. Low-
complexity matches, in particular, may 
swamp search outputs – these are parts of 
a sequence that have high densities of 
particular residues (eg poly-GxP, such as 
occurs in sequences like collagen, or 
poly-glutamine tracts that occur in 
Huntingdon’s disease etc). Although it is 
possible to mask such sequences, this can 
also create complications. The modular 
and domain nature of many proteins also 
causes problems on different levels. When 
matching multi-domain proteins, it may 
not be clear which domain or domains 
correctly correspond to the query. Even if 
the right domain has been identified, it 
may not be appropriate to transfer the 
functional annotation to the query because 
the function of the matched domain may 
be different, depending on its biological 
context. Similar issues arise with the 
existence of multi-gene families, because 
database search techniques cannot 
differentiate between orthologues (usually 
the functional counterparts of a sequence 
in another species) and paralogues 
(homologues that perform different but 
related functions within the same 
organism). Given these complexities, 
correct functional assignment from 
searches of sequence databases alone can 

be difficult or impossible to achieve. As a 
result, it is now customary also to search a 
range of ‘pattern’ databases, so-called 
because they distil patterns of residue 
conservation within groups of related 
sequences into discriminators that aid 
family diagnosis. Searching pattern 
databases is thus more selective than 
sequence database searching because 
discriminators are designed to detect 
particular families. Different analytical 
approaches have been used to create a 
bewildering array of discriminators, 
which are variously termed regular 
expressions, profiles, fingerprints, blocks, 
etc.5 – these terms are summarized in 
Figure 1. The different descriptors have 
different diagnostic strengths and weak-
nesses and different areas of optimum 
application, and have been used to 
generate different pattern databases, 
which also differ in content! The aim of 
this paper is to provide an overview of 
pattern databases in common use and to 
offer pointers on how best to use them. As 
this is a fast moving area, a list of web 
addresses is given in Table 1 to allow 
readers to obtain current information on 
the resources discussed [9-11]. 
 

Web addresses of pattern and alignment 
databases in common use given below. 
For a more exhaustive list, refer to the 
annual database issue of Nucleic Acids 
Research (http://www3.oup.co.uk/nar/) 
PROSITE http://www.expasy.ch/prosite/ 
Blocks http://www.blocks.fhcrc.org/ 
PRINTS http:// www.bioinf.man.ac.uk/ 
dbbrowser/PRINTS/IDENTIFY http:// 
dna.Stanford.EDU/identify/Profiles http:// 
www.isrec.isb-sib.ch/software /PFSCAN- 
form.html Pfam http://www.sanger.ac.uk/ 
Software/ Pfam/ ProDom http://www. 
toulouse.inra.fr/prodom.html SBASE 
http://www.icgeb.trieste.it/sbase/PIR-ALN 
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http://www-nbrf.georgetown.edu/pirwww 
/search/textpiraln.htmlPROT-FAM http:// 
vms.mips.biochem.mpg.de/mips/programs 
/classification.htmlDOMOhttp://www.inf
obiogen.fr/~gracy/domo/ProClass http:// 
pir.george-town.edu/gfserver/proclass. 
Html Proto Map http://www.protomap.cs. 
huji.ac.il/PIMA http://dot.imgen.bcm.tmc. 
edu: 9331/seq-search/protein-search.html 
InterPro http://www.ebi.ac.uk/interpro/ 
 

 
Figure 1: At the heart of sequence 
analysis methods is the multiple sequence 
alignment. Application of these methods 
involves the derivation of some kind of 
representation of conserved features of 
the alignment, which may be diagnostic 
of structure or function. Various terms are 
used to describe the different types of data 
representation, as shown. Within a single 
conserved region (motif), the sequence 
information may be reduced to consensus 
expression (regular expression), often 
simply referred to as a pattern. In this 
example, square brackets indicate 
residues that are allowed at this position 
of the motif and x denotes any residue, 
the (2) indicating that any residue can 
occupy consecutive positions in the motif. 
The term used to describe groups of 
motifs in which all the residue 
information is retained within a set of 
frequency (identity) matrices is a 
fingerprint, or signature. Adding a scoring 

scheme to such sets of frequency matrices 
results in position-specific weight 
matrices, or blocks. Using information 
from extended conserved regions that 
include gaps (usually referred to as 
domains) gives rise to profiles; and 
probabilistic models derived from 
alignment profiles are termed hidden 
Markov models [14]. 
 
THE METHODS BEHIND THE DATABASES 
At the heart of the analysis methods that 
underpin pattern databases is the multiple 
sequence alignment. When building an 
alignment, as more distantly related 
sequences are included, insertions are 
often required to bring equivalent parts of 
adjacent sequences into the correct 
register, as illustrated schematically in 
Figure 2 As a result of this gap insertion 
process, islands of conservation emerge 
from a backdrop of mutational in change. 
These regions, usually termed motifs or 
blocks, are typically around 10– 20 
residues in length and tend to correspond 
to the core structural or functional 
elements of the protein. The conserved 
nature of motifs effectively provides us 
with a set of familial blueprints, and 
different techniques have evolved to 
exploit this fact. As shown in Figure 2, 
the methods fall broadly into three 
categories, depending on whether they use 
single motifs, multiple motifs or full 
domain alignments. All of these methods 
involve the derivation of some kind of 
discriminatory representation of aspects 
of the alignment, providing characteristic 
signature for the family that can be used 
to diagnose future query sequences [7,8]. 
The diagnostic success of the different 
methods depends on how reliably true 
family members (true-positives) can be 
distinguished from 
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Figure 2: Illustration of the three principal 
methods for building pattern databases: ie 
using single motifs, multiple motifs and 
full domain alignments. Single-motif 
(regular expression pattern) approaches 
have given rise to the PROSITE and 
IDENTIFY databases; multiple-motif 
methods have spawned the Blocks and 
PRINTS databases; and domain alignment 
methods have resulted in the Profiles and 
Pfam resources [15] non-family members 
(true-negatives). In practice, there is a 
crucial balance between the number of 
incorrect matches that are made 
(falsepositives) and the number of correct 
matches that are missed (false-negatives) 
at a given scoring threshold. As shown in 
Figure 3, for a given search, this requires 
the distribution of true-positive matches 
to be resolved from that of the true 
negatives, such that the overlap between 
them is minimized or eliminated. This is 
important because, for matches in the 
overlapping area, it can be difficult or 
impossible to determine which are correct 
(statistical approaches are used to assign 
confidence levels to matches in this area, 
but mathematical significance does not 
give biological proof). The different 
analytical methods that have been 
designed to tackle these issues are 
outlined below. 
 

 
 

Figure 3: Resolving true and false 
matches. In a database search, the desire 
is to establish which sequences are related 
(true-positive) and which are unrelated 
(true-negative). At a given scoring thre-
shold, it is likely that several unrelated 
sequences will match a search pattern 
erroneously (so-called false positives) and 
several correct matches will fail to be 
diagnosed (false-negatives). In sequence 
analysis, the challenge is to improve 
diagnostic performance by capturing all 
(or the majority) of true positive family 
members, including no (or few) false-
positives, and minimizing or precluding 
false-negatives. 
Single motif methods: Of the various 
approaches, single-motif (regular expre-
ssion pattern) methods are easier to 
understand. The idea is that the single 
most conserved, often functionally 
important can characterize particular 
protein family, region (eg an enzyme 
active site) observed in a sequence 
alignment. The motif is reduced to a 
consensus expression in which all but the 
most significant residue information is 
discarded. For example, the expression D-
x-{KR}-[NQ] means that a conserved 
aspartic acid (D) residue is followed by an 
arbitrary residue (x) and any residue 
except lysine (K) or arginine (R), and 
finally a polar residue, which may be 
asparagines (N) or glutamine (Q). No 



Ujjan et. al;                                                                                               Pak. J. Biotech                                                            

 

72

other residues or residue combinations are 
tolerated by the expression; matches to it 
must therefore be exact, or will be 
disregarded. So rigid is this syntax that 
regular expression patterns do not 
perform well when used to represent 
highly divergent protein families 
[16,22,23]. For example, such patterns 
will fail to match significant sequences if 
they contain a single amino acid 
difference. The sequence DARN is thus a 
mis-match, in spite of matching the above 
expression in all but one position (it has a 
forbidden arginine as its third residue). 
Conversely, a pattern will match anything 
that corresponds to it exactly, regardless 
of whether it is a true family member. The 
problem is that match to single motifs 
lack biological context, match to a pattern 
is just a match to a pattern and may well 
only be fortuitous. To assess the 
likelihood of a match being ‘real’, it must 
be verified with corroborating evidence, 
whether via other database searches the 
literature or experiment [24]. 
An approach that addresses the strict 
nature of exact regular expression 
matching is to assign amino acid residues 
to distinct, but over-lapping, substitution 
groups corresponding to various 
biochemical properties (eg charge and 
size), as shown in Table 2. This is 
biologically sensible because each amino 
acid has several properties and can serve 
different functions, depending on its 
biochemical context. However, although 
the technique is more flexible, its inherent 
permissiveness has an inevitable signal-
to-noise trade-off, ie resulting patterns not 
only have the potential to make more 
true-positive matches, but they will 
consequently also match more false-
positives. For example, the sequence 
EVEN, which would be excluded by the 
exact regular expression above, would be 

matched by the permissive one (because 
Asp and Glu belong to the same group), 
even if aspartic acid were biologically 
mandatory at the first position of the 
motif [25,26]. 
 

 
Multiple-motif methods in response to 
these problems, diagnostic techniques 
evolved to exploit multiple motifs. Within 
a sequence alignment, it is common to 
find several motifs that characterize the 
aligned family. Diagnostically, it makes 
sense to use many or all such regions to 
build a family signature. In a database 
search, there is then a greater chance of 
identifying a distant relative, whether or 
not all parts of the signature are matched. 
For example, a sequence that matches 
only four of seven motifs may still be 
diagnosed as a true match if the motifs are 
matched in the correct order in the 
sequence and the distances between them 
are consistent with those expected of true 
neighbouring motifs. The ability to 
tolerate mis-matches, both at the level of 
individual residues within motifs, and at 
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the level of motifs within the complete 
signature, makes multiple-motif matching 
a powerful diagnostic approach. 
Different multiple-motif methods have 
arisen, depending on the technique used 
to detect the motifs and on the scoring 
method employed. Probably the simplest 
to understand is the technique of 
fingerprinting [8]. Here, groups of 
conserved motifs are existed from a 
sequence alignment and used to create a 
series of frequency (identity) matrices – 
no mutation or other similarity data are 
used to vet the results. The scoring 
scheme is thus based on the calculation of 
residue frequencies for each position in 
the motifs, summing the scores of 
identical residues for each position of a 
retrieved match. However, the simplicity 
of this approach is both its strength and its 
weakness. In other words, because the 
method exploits observed residue 
frequencies, the scoring matrices are 
sparse and thus perform cleanly (with 
little noise) and with high specificity; at 
the same time, their absolute scoring 
potential is limited by the nature of the 
observed data. For richly populated 
families, this is not a problem because the 
resulting matrices will reflect the 
constituent sequence diversity; but for 
poorly populated families, the matrices 
may be too sparse and may not encode 
sufficient variation to be able to detect 
distant relatives reliably 19,20,27]. 
 

 
Profile methods: An alternative philo-
sophy to motif-based approaches takes 
into account the variable regions between 
conserved motifs, which also contain 
valuable information. Here, the complete 
conserved portion of the alignment 
(including gaps) effectively becomes the 
discriminator. The discriminator, termed a 
profile, defines, which residues are 
allowed at given positions, which 
positions are highly conserved and which 
degenerate, and which positions can 
tolerate insertions. The scoring system is 
intricate and may include evolutionary 
weights and results from structural 
studies, as well as data implicit in the 
alignment. In addition, variable penalties 
may be specified to weight against 
insertions and deletions occurring within 
core secondary structure elements [12,13]. 
Profiles (sometimes referred to as weight 
matrices) provide a sensitive means of 
detecting distant sequence relationships 
where only very few residues are well 
conserved. 
PATTERN DATABASES: The different 
methods of analyzing sequences and 
encoding protein families have given rise 
to different pattern databases, as shown in 
Table 3. Despite their differences, pattern 
databases have arisen from the same 
principles, i.e. homologous sequences 
share conserved motifs, presumably 
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crucial to the structure or function of the 
protein, which provide a signature of 
family membership. A new sequence that 
matches these predefined characteristics 
may then be assigned to a family. If the 
structure and function of the family are 
known, searches of pattern databases thus 
theoretically offer a fast track to the 
inference of biological function. Because 
these resources are derived from multiple 
sequence information, searches of them 
are often better able to identify distant 
relationships than are searches of the 
sequence databases. However, none of the 
pattern databases is yet complete. They 
should therefore be used to augment 
sequence searches, rather than to replace 
them.  
 

 
 
WHICH DATABASE IS BEST? The 
plethora of available databases presents 
bewildering choices to the sequence 
analyst. Which is diagnostically most 
reliable? Which has the most useful 
annotations? Which is the most 
comprehensive? Which should I use? It is 
difficult to assess the quality of particular 
resources: each has different diagnostic 
strengths and weaknesses, each offers 
different family coverage and different 
levels of annotation each has good points 
and bad. Nevertheless, some general 

points bear consideration. Initially, the 
clustered family resources appeal because 
they are so comprehensive, yet they suffer 
certain limitations. Automatic clustering 
is based on pre-set scores and the 
resulting clusters need not have precise 
biological correlations. Furthermore, the 
search tools tend to involve flavours of 
BLAST or FASTA, which are good at 
highlighting generic similarities but 
cannot pinpoint differences (eg such as 
between highly similar but functionally 
disparate receptor subtypes). Perhaps the 
biggest failing of automatically generated 
pattern and cluster databases is that they 
carry no annotations. The advantage of 
searching them is that they are more 
comprehensive than their manually 
derived counterparts. The disadvantage is 
that there may be no way to ascertain the 
biological significance of a match, if 
indeed it has any (that a match has been 
made does not mean an evolutionary 
relationship necessarily exists). This is 
important to understand – automatic 
methods can only detect similarities, but it 
is for the user to infer homology from 
supporting biological evidence [17]. 

Among pattern databases, single-
motif methods that use exact regular 
expression pattern-matching have known 
diagnostic limitations. These methods 
tolerate no similarity, so will fail to 
diagnose sequences that contain subtle 
changes not catered for by the pattern. 
Moreover, single motifs offer no 
biological context within which to assess 
the significance of a match – each has 
therefore to be verified individually. 
Multiple motif approaches inherently 
offer improved diagnostic reliability by 
virtue of the mutual context provided by 
motif neighbours. Thus, if a query fails to 
match all the motifs in a signature, the 
pattern of matches formed by the 
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remaining motifs still allows the user to 
make a confident diagnosis. Pattern 
resources derived from existing databases 
have the limitation that they offer no 
further family coverage. Nevertheless, 
they have the advantage of implementing 
different analytical methods from their 
source databases, thus offering different 
scoring potentials on the same data, and 
furnishing important oppor-tunities to 
diagnose relationships missed by the 
original implementations. Finally, 
manually annotated databases are set 
apart from their automatically created 
counterparts by virtue of (i) attempting to 
provide validation of results, and (ii) 
offering detailed information that helps to 
place conserved sequence information in 
structural or functional contexts. This is 
vital for the user, who not only wants to 
discover whether a sequence has matched 
a pre-defined motif, but also needs to 
understand its biological significance. 
 
A COMPOSITE PATTERN DATABASE 
Today, comprehensive sequence analysis 
requires accessing a variety of disparate 
databases, gathering the range of different 
outputs and arriving at some sort of 
consensus view of the results. In the 
future, however, this process should 
become more straightforward. The 
curators of PROSITE, PRINTS, Pfam, 
Profiles and ProDom are creating a 
unified database of protein families, 
termed InterPro. The aim is to provide a 
single family annotation resource, based 
on existing documentations from PRINTS 
and PROSITE, and on the minimal 
annotations in Pfam, with each InterPro 
document linking back to the relevant 
entries in the satellite pattern databases. 
This will simplify sequence analysis for 
the user, who will thereby have access to 

a central resource for protein family 
diagnosis [15]. 
CONCLUSION: Creating and searching 
pattern databases are activities that lie at 
different ends of a fallible chain of events. 
We begin with a sequence alignment; we 
create some kind of scoring function to 
encode the conservation within the 
alignment (a scoring matrix, HMM, etc.), 
we store the discri-minators in a database, 
and we search them with different 
algorithms. Problems arise if unrelated 
sequences have crept into the alignment, 
which in turn lead to errors in the 
discriminators, which then give 
ambiguous or incorrect search results. 
Alternatively, the discriminators may be 
sound, but the search algorithms may not 
be sufficiently sensitive to allow un-
equivocal diagnosis, leading the user to 
false conclusions of family ties. If the user 
has performed this experiment on a newly 
determined sequence and submits the 
results to one of the sequence databases, 
the annotation error becomes available for 
mass propagation. 

Recently, there has been doom-
mongering in the literature about the 
quality of our databases, some harbingers 
of misfortune predicting a future error 
catastrophe. At the same time, claims of 
success for some approaches to family 
classification and function prediction have 
been equally overdone. A more balanced 
view recognizes that our databases and 
search routines are not perfect, but with 
the right approach we can avoid the 
pitfalls of jumping to over-pessimistic or 
over-zealous conclusions. Until we have 
sufficient experimental data available, 
pattern and sequence databases are 
probably the best tools we have for 
accessing the functional and evolutionary 
clues latent in the sequences flooding 
from the genome projects. Pattern 
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databases offer several benefits: (i) by 
distilling multiple sequence information 
into family or domain descriptors, trivial 
errors in the underlying sequences may be 
diluted; (ii) annotation errors may be 
quickly spotted if the description of one 
sequence differs from that of its family; 
and (iii) they allow specific diagnoses, 
placing individual sequences in domain or 
family contexts for a more informed 
assessment of possible function. By 
contrast, searches of sequence databases 
tend to reveal only generic similarities, 
making precise pinpointing of a particular 
biological niche more difficult. While 
there is some overlap between them, the 
contents of the pattern databases differ. 
Together they encode about 2,200 fam-
ilies, including globular and membrane 
proteins, modular polypeptides, and so on. 
It has been estimated that the total number 
of families might be in the range 1,000 to 
10,000, so there is a long way to go 
before any of the databases can be consi-
dered complete. Thus, in building a search 
strategy, it is good practice to include all 
available pattern resources, to ensure that 
the analysis is as comprehensive as 
possible and that it takes advantage of a 
variety of search methods. Where there is 
consensus, diagnoses can be made with 
greater confidence. 
     Unfortunately, creating and annotating 
family descriptors is time-consuming, so 
pattern databases have not kept pace with 
the deluge of sequence data and are cones- 
quently still very small. Nevertheless, as 
they become more comprehensive, as the 
volume of sequence data expands and 
search outputs become more complex, 
their diagnostic potency ensures that 
pattern databases will play an increasingly 
important role as the post-genome quest 
to assign functional information to raw 
sequence data gains pace. 
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